
PREMIERE ISSUE Delphi INFORMANT ▲ 1

FEATURES

8 Visual Programming - by Doug Horn
We kick off our premiere issue with a quick visual tour of the Delphi landscape. If you haven’t been exposed to Delphi yet,
let Mr Horn introduce you to the Component Palette, Object Inspector, Browse Gallery, Code Editor, and much more.

15 The Way of Delphi - by Gary Entsminger
Delphi development = component development. It’s the mantra of Delphi programming, so it deserves your immediate
attention. Mr Entsminger provides a solid introduction to properties, beginning with the simplest component.

21 DataSource1- by Dan Ehrmann
Mr Ehrmann’s demonstration program is a tour de force of Delphi features, including modifying a Query component at run-time,
sharing an event handler among multiple components, and creating a dynamic tabbed interface to filter database information.

26 Sights & Sounds - by Ken Nesbitt
Like to listen to a few tunes while you’re debugging an application? The Delphi MediaPlayer component makes
setting up a CD player short work, as Mr Nesbitt explains. Didn’t you know that Windows API calls could be fun?

31 Delphi C/S - by Sundar Rajan
Delphi was designed for client/server programming. Using Gupta’s SQLBase as an example, Mr Rajan gets us started by
demonstrating how to set up a C/S development environment — from ODBC, to the BDE, to the Delphi Database Form Expert.

39 DBNavigator - by Cary Jensen Ph.D.
The Borland Database Engine is the common denominator to working with Borland databases — InterBase, Paradox for
Windows, and dBASE for Windows. And the BDE uses aliases to make it all easy, as Dr Jensen points out.

44 From the Palette - by Jim Allen and Steve Teixeira
We just can’t say enough about components! Misters Allen and Teixeira launch their component series with an introduction to
component design, including property and method basics, and the proper use of class directives.

48 At Your Fingertips - by David Rippy
Mr Rippy kicks off his regular “tips & tricks” column of brief techniques to help get you quickly up to speed with Delphi and
Object Pascal. This month’s features include: implementing a status bar, locating values in a table, and filtering records in a DBGrid.

50 API Calls - by Alistair Ramsey
Delphi makes it easy to call a DLL function, but what if you don’t know the name of the DLL until run-time?
It’s not a problem. Mr Ramsey demonstrates a technique for calling DLL functions on-the-fly.

DEPARTMENTS

2 Delphi Tools
4 News Line

Premiere Issue - Volume 1, Number 1

Delphi Revealed
Power, Speed,
and Scalability

PREMIERE ISSUE

Delphi
T O O L S

New Products
and Solutions

Delphi Training

The DSW Group, Ltd. of
Atlanta, GA now offers Delphi
training. The five-day Delphi
Basics course is scheduled for
May, June, and July of 1995.
For US$1500, developers will
learn about Delphi architec-
ture, forms, database design,

the Local InterBase Server, and
ReportSmith. The course pro-
vides an overview of Object

Pascal, and instruction regard-
ing Help and OLE compo-

nents. Call (800) 356-9644 to
receive more information. The

DSW Group is a Borland
Training Connections Member.
Conversion Assistant Moves VB Applications to Delphi

EarthTrek of Burlington, MA is
shipping its Conversion Assistant,
a tool that allows developers to
migrate Microsoft Visual Basic
(VB) applications to Delphi. It
reads VB project and program
files and creates a mapping to the
equivalent files that can be read,
modified, and executed in
Delphi. The Conversion
Assistant can handle VB projects
of varying size and complexity
allowing Delphi developers to
preserve their investment in pre-
vious development work.

The Conversion Assistant
reads VB MAK, FRM, and
BAS files and provides a “best
fit” translation to the Delphi
DPR, DFM, and PAS format
files. Users can port an entire
application or portions of a
VB project to Delphi units.

Conversion Assistant features;
VB to Object Pascal conversion;
mapping of VBX controls to
corresponding Delphi controls;
VB project placement and siz-
ing form conversion; and auto-
matic creation of Delphi project
files. It also accounts for differ-
ences between the two products,
including multiple object
instances in VB (at design and
run time), and fonts and colors.

Future versions of Conversion
Assistant will convert
Powersoft’s PowerBuilder
applications to Delphi.

Price: US$79

Contact: EarthTrek, 7 Mountain Road,
Burlington, MA 01803

Phone: (617) 273-0308

Fax: (617) 270-4437
New Windows Data Transfer Tool Available

Conceptual Software, Inc., of
Houston, TX has announced
the release of DBMS/COPY
for Windows. This tool trans-
fers data between most spread-
sheets, databases, statistical
analysis packages, ODBC,
ASCII (fixed and free for-
mats), time series, and other
packages. DBMS/COPY lets
the user view the data, control
which variables are written,
select the records written, and
compute new variables. The
built-in batch processing
enables users to save transfer
specifications for future use.

DBMS/COPY for Windows
supports data transfer between
over 80 software packages.
These include: Excel, Lotus 1-
2-3, Quattro Pro, Alpha Four,
Clipper, DataEase to 4.53,
dBASE II III and IV, FoxBase
and FoxPro, Paradox to 4.5,
PRODAS to 4.0, Rbase to 3.5,
Reflex 1 & 2, BMDB-
/Dynamic, BMDB/New
System, EpiInfo to 6, Minitab
Extended to 10, S-Plus, SAS,
SigmaStat, SPSS, Stata to 3.1,
StatGraphics, Statistica, Systat,
Forecast Pro, and ACT!

DBMS/COPY has a built-in
query builder for reading
packages with ODBC drivers.
Complex SQL queries can also
be created with the integrated
query builder.

Price: DBMS/COPY for Windows
US$295; DBMS/COPY for Windows and
DOS (new version 5) US$395; Windows
upgrade US$149; Windows and DOS
upgrade US$199. Prices do not include
shipping charges.

Contact: Conceptual Software, Inc., 9660
Hillcroft #510, Houston, TX 77096

Phone: (800) 328-2686 or
(713) 721-4200

Fax: (713) 721-4298
Delphi INFORMANT ▲ 2

PREMIERE ISSUE

New Delphi Books

The Tao of Objects
By Gary Entsminger

M&T Books
(ISBN: 1-55851-412-0)
The Tao of Objects is an

introduction to object-based
software design and object-

oriented programming. It uses
examples from Delphi, C++,

Visual Basic, and dBASE.
Price: US$27.95 (245 pages)

Instant Delphi Programming
By Dave Jewell

Wrox Press
(ISBN: 1-874416-57-5)

Instant Delphi Programming
shows experienced developers
how to program in Windows

using Delphi. It’s equipped with
three appendices: Delphi for
Pascal Developers, Delphi for
Visual Basic Developers, and
Delphi Database Connectivity.

Price: US$24.95 (400 pages)

Delphi
T O O L S

New Products
and Solutions
VisualPros: Developer and Video Tools for Delphi

Shoreline Software of Vernon,
CT is shipping VisualPROS for
Delphi, two sets of tools written
and optimized entirely in
Delphi for Delphi: Visual
Application Enhancement
Widgets and Visual Video
Widgets. The sets include appli-
cation development and full
motion video tools for Delphi
application developers.

The Visual Application
Enhancement Widgets package
includes: VisualProgress, a cus-
tomizable progress bar compo-
nent; a VisualTileBack compo-
nent for placing bitmaps (tiled,
centered, stretched) and gradient
fills into forms and dialog boxes;
a VisualHelpCloud component
for bubble help support includ-
ing links to the WINHELP
Engine; a VisualRegINI compo-
nent that provides an interface to
the flat-file INI structure and the
advanced Registry structure of
Microsoft Windows and
Windows NT; VisualPrompt-
Edit, an enhanced data-entry
component; VisualLED, an
LED display component;
VisualButtonExt, an enhanced
bitmap button component; and
VisualMenuExt, a tear-and-tack
menu component.

The Visual Video Widgets
package includes: a Visual-
Capture component for cap-
turing video from Delphi; a
VisualPlayBack component
for viewing video clips; a
VisualAnnotate component
for adding voice and/or text
descriptions to video clips;
and a VisualQuery compo-
nent for managing video or
frames stored in a relational
database.

Price: Visual Application Enhancement
Widgets, US$79.99; Visual Video
Widgets, US$129.99.

Contact: Shoreline Software, A
Transdominion Company, 35-31 Talcottville
Road, #123, Vernon, CT 06066

Phone: (800) 261-9198 or
(203) 870-5707

Fax: (203) 870-5727

CompuServe: 70541,2436
MicroHelp Ships Communications Library 3

MicroHelp Inc. of Marietta,
GA has announced the
release of Communications
Library, Version 3. The new
version includes a VBX con-
trol, 16 and 32-bit OLE con-
trols, and an additional DLL
optimized for 386 enhanced-
mode performance.

Comm Library 3 is a complete
set of communication routines
that offer a wide variety of ter-
minal emulations and file
transfer protocols to help pro-
grammers add data communi-
cations to applications. Written
in C, Comm Library’s file
transfer routines work in the
background allowing other
programs to continue fore-
ground tasks. The following
terminal emulations and file
transfer protocols are support-
ed: ANSI color/graphics, TTY,
VT52, VT100, VT220,
CompuServe B+, Kermit,
Xmodem/CRC/1K,
Ymodem/Ymodem-G, and
Zmodem (with AutoRecovery).

Comm Library 3 includes over
150 of the most popular
modem initialization strings,
and supports speeds up to
256,000 bps.

Price: US$149; Comm Library 2
upgrade, US$69.

Contact: MicroHelp Inc., 4359
Shallowford Industrial Parkway, Marietta,
GA 30068

Phone: (800) 777-3322
Delphi INFORMANT ▲ 3

PREMIERE ISSUE

News
L I N E

P r e m i e r e I s s u e

Alistair Ramsey and Ian Sharp
of Dunstan Thomas, in
association with Borland

International, took second
place in the EXE Developers

Challenge with an application
written in Delphi. Two-time

world champion, Bruce
Lomasky (an American) won
the event, held annually in

Sandown Park, England. The
competition benefited the

Royal National Institute for the
Blind and was sponsored by

EXE magazine.

SQA Inc. and Borland
International have

announced an agreement to
enhance the integration of
their SQA TeamTest and
Delphi products. SQA

TeamTest is built on a network
repository that integrates six

major testing areas: test plan-
ning, test development, test
execution, results analysis,

defect tracking, and summary
reporting and analysis.

Borland’s Anders
Hejlsberg, the Principal
Engineer of Delphi.

M
ill

er
-F

re
em

an
Delphi Unveiled, Main Attraction at Software Development 95
Borland’s Client/Server Group Product Manager,
Zack Urlocker.

Software Development 95: Pandemonium reigns at the Borland booth.

M
iller-Freem

an

M
iller-Freem

an
San Francisco, CA — February
14-16, 15,000 attendees
packed San Francisco’s
Moscone Center for Software
Development ’95. And while
over 200 companies participat-
ed, the undeniable stand-out
was Borland International
powered by the popularity of
its new Rapid Application
Development environment,
Delphi, which was officially
unveiled at the conference.

The Delphi roll-out event
occurred on the evening of the
14th and featured: Starfish
Software’s CEO Philippe Kahn
[see associated news items on
page 7]; Borland’s VP of
Research and Development,
Paul Gross; and Borland’s
Client/Server Group Product
manager, Zack Urlocker. Beta
testers also demonstrated a
number of impressive Delphi
applications that have already
been deployed.

The star of the roll-out was the
Principal Engineer of Delphi,
Anders Hejlsberg, who gave a
brilliant demonstration of the
new product. As a finalé,
Hejlsberg loaded the Delphi
project into Delphi, comment-
ing “As you can see, it’s a rather
large project.” The estimated
1,500 attendees responded with
a standing ovation.

The launch was followed with
a dinner party at the San
Francisco Exploratorium, with
live music provided by a steel-
drum band. According to
Cindy Blair of Miller
Freeman, over 35 busses were
used to shuttle attendees to
the Delphi party. The party
also featured a battery of com-
puters connected to Borland’s
World Wide Web site where
Delphi was undergoing a “vir-
tual launch”.
The Borland booth overflowed
all three days of SD 95. When
the doors opened each morn-
ing, attendees literally ran to the
Borland booth to see Delphi
demonstrated. At the booth, it
was standing room only for the
continuous Delphi demonstra-
tions.

A staff of over 20 Borland
employees managed the booth,
with six Delphi demonstrators
keeping the 60 amphitheater
seats full. Borland’s Database
Public Relations Manager Tami
Casey said “We were really
pleased. There was a lot of traf-
fic at our booth and there was a
lot of excitement. We actually
had people running to the
Delphi booth.”

Ian Robinson, Borland’s Senior
Product Marketing Manager

for Delphi,
said Borland
had expected
Delphi to be
well received,
but the launch
event was bet-
ter than they
anticipated:
“Delphi cer-
tainly was the
key launch of
the show.”
Robinson said
Borland gave away 3,000 pre-
release copies of Delphi to
launch attendees and those
attending Delphi demonstra-
tions. Over half were given
away the first day.

Shoreline Software’s Glenn
Field said the response to
their Delphi-compatible
Visual Pros at SD ’95 was
outstanding. He said there
was “tremendous momentum
from the crowd, it was very
intense.” With two hours of
demonstrations each day, the
Shoreline Software booth
attracted at least 100 people
per demonstration. And
since the launch, Field says
he’s been swamped. “Every
time I get on CompuServe
[in the Borland Delphi
Forum] I’m getting buried in
messages.”
Delphi INFORMANT ▲ 4

Borland Wins Lotus Case
 News
L I N E

P r e m i e r e I s s u e

MicroHelp Inc. has announced
that three of its Windows devel-
opment tools — Compression

Plus 4, SpellPro 2, and
Communications Library 3

— now support Borland
International’s Delphi. In

addition, MicroHelp’s VBTools 4
and Fax Plus products will add

Delphi examples when upgraded
for Windows95. For more

information, call MicroHelp at
(800) 777-3322, or

(404) 516-0899.

Borland International has
announced the resignation of

David Liddle, 49, from its board
of directors. Liddle cited a conflict
of interest due to his position on

Sybase, Inc.’s board of directors.
Sybase recently finalized its acqui-
sition of Powersoft Corporation,

a company that competes with
Borland. Liddle’s experience

includes 10 years at Xerox Palo
Alto Research Center. He is also

on the board of directors of
Broderbund Software and

NetFrame Systems.
Scotts Valley, CA — The
United States Court of
Appeals for the First Circuit
has reversed a District Court
ruling that stated the Quattro
and Quattro Pro spreadsheet
products, formerly developed
and marketed by Borland
International Inc., infringed
the copyright of Lotus 1-2-3.

In written opinions, all three
appellate judges held in favor
of Borland, overturning previ-
ous decisions by the district
court. (The lower court had
held that a single element of
Borland’s Quattro and
Quattro Pro spreadsheets —
the menu command hierarchy
— infringed the copyright of
Lotus 1-2-3.) In its opinion,
the court concluded, “Because
we hold that the Lotus menu
command hierarchy is an
uncopyrightable subject mat-
ter, we further hold that
Borland did not infringe the
copyright by copying it.”

Philippe Kahn, chairman of
Borland, was pleased with the
ruling. He said it represented a
clear victory for consumers,
computer programmers, and
open systems. Kahn also said he
believed it will foster a more
competitive software industry
and promote innovation.
Borland’s President, Gary
Wetsel agreed and said the deci-
sion removes a huge cloud of
uncertainty from Borland and
will allow them to move for-
ward with their business plans.

In regard to legal guidelines,
Robert Kohn, senior vice
president of Corporate Affairs
and general counsel for
Borland, said the First
Circuit’s decision established
clear guidelines that reflect
Congress’ intent for what is
and is not copyrightable in a
PREMIERE ISSUE
computer program. In his
opinion, this decision is con-
sistent with other federal cir-
cuit courts’ rulings and will
now provide the software
industry with a clear prece-
dence. Kohn also said Borland
may request Lotus to pay their
attorney fees.

Although Lotus can appeal this
decision, Kohn doubts they
will. An appeal by Lotus would
require several steps and a large
financial commitment.

When the District Court ruled
that the Command Hierarchy
in Borland’s spreadsheet prod-
ucts infringed the copyright of
Lotus 1-2-3 in August 1992,
Borland voluntarily removed
this feature from shipping ver-
sions of the product. The
court reaffirmed its decision in
July 1993.

Then in August 1993, the
Federal District Court ruled
that another compatibility fea-
ture in Quattro Pro and
Quattro Pro for Windows
infringed the copyright of
Lotus 1-2-3. The court subse-
quently entered an injunction
against Borland, barring fur-
ther sales or distribution of
then current versions of
Borland’s spreadsheet prod-
ucts. In response, Borland
shipped new versions of
Quattro Pro that didn’t
include the features found to
be infringing, and announced
it would seek an immediate
appeal. Borland sold its
Quattro Pro spreadsheet to
Novell Inc. in March 1994.
InstallSHIELD Now Supports Delphi

Schaumburg, IL — Stirling
Technologies, Inc. has
announced that its
InstallSHIELD installation
toolkit will support Delphi. As
part of their relationship with
Borland, Stirling will create a
customized template for
Delphi applications, similar to
the template available in the
Borland dBASE Developer’s
Kit. This template will be
included on the Delphi CD
ROM. Developers will be able
to make changes to the tem-
plate and create a customized
Delphi installation. ISVs will
benefit from InstallSHIELD’s
ready-to-use installation script.

Stirling will also create a visual
tool based on InstallSHIELD
for creating Delphi installa-
tions. It will provide a point-
and-click environment.
According to the company,
they have encapsulated all the
specialized installation require-
ments for developing Delphi
applications — developers
point to the project file for the
application and the installa-
tion toolkit does the rest.

InstallSHIELD features three
customizable templates, 50
pre-built dialog boxes, and is
capable of detecting over 50
parameters on the end-user’s
system. In addition,
InstallSHIELD can automati-
cally add program folder icons;
modify WIN.INI,
CONFIG.SYS, and
AUTOEXEC.BAT files; call
any DLLs regardless of format;
provide compression/decom-
pression for your application
files better than or equal to
PKZIP; and keep the user
informed with built-in graphi-
cal feedback objects. For more
information, call Stirling at
(708) 240-9111.
Delphi INFORMANT ▲ 5

PREMIERE ISSUE

News
L I N E

P r e m i e r e I s s u e

Asymetrix Corp. is adding
Delphi support to its database

design CASE tools,
InfoModeler 1.5 Desktop

Edition and InfoModeler 1.5
Client/Server Edition, expected
to ship in the second quarter of
1995. InfoModeler uses sample
data and English statements to
create a model from an infor-
mation system, then validates

and transforms the model into a
database design.

The Chameleon Group has
established a clearing house for
Delphi third-party software for

developers in the Central
European German-language

countries. For more information
contact The Chameleon group

at 01149 211 379057, or
send a message to Joe Williams

via CompuServe at
74372,3060.
Mortice Kern Systems Announces Alliance with Borland

n
Waterloo, ON — Mortice Ker

Systems has announced a new
strategic alliance with Borland
International Inc. MKS has
developed hooks to seamlessly
integrate MKS Source
Integrity into Delphi. MKS
Source Integrity’s fully-docu-
mented open API will give
Delphi users all the benefits of
MKS’ configuration manage-
ment system from within the
Delphi environment.

According to MKS, Source
Integrity increases the opportu-
nities for VARs to provide a
complete development solu-
tion to their customers. With
the growing popularity of con-
figuration management in
today’s development industry,
more companies are seeing the
need for a truly open configu-
ration management system
such as MKS Source Integrity.

MKS Source Integrity features
include complete project man-
agement facilities, Visual
Merge, new reporting capabil-
ities, event triggers, a new
configuration language, inte-
gration into Visual C++ and
Borland C++, an automated
building process, file promo-
tion, and NetWare-specific
functionality. MKS Source
integrity is available for DOS,
OS/2, Windows, Windows
NT, and UNIX. For more
information, call MKS at
(800) 265-2797.
LBMS Announces Alliance with Borland

San Francisco, CA — LBMS,
Inc., a provider of Windows-
based client/server CASE and
process management tools, has
announced a cooperative
development and marketing
agreement with Borland
International Inc.

Under the agreement, LBMS
will provide the tools for
Borland to develop SE/Open
for Delphi, a bi-directional
interface between LBMS’
client/server application devel-
opment tool, Systems Engineer
(SE) and Borland’s Delphi.

SE/Open for Delphi will pro-
vide developers with a seamless
environment for the complete
analysis, design, and develop-
ment of both the client and
server portions of LAN-based
applications. SE/Open for
Delphi will facilitate object
management, re-use manage-
ment, database design, and
prototyping management.
According to Borland,
SE/Open for Delphi will com-
bine Delphi’s visual develop-
ment environment with
LBMS’ CASE modeling and
repository capabilities.

Specifically targeting team-
based application develop-
ment, SE is a comprehensive
set of open, integrated
client/server CASE tools that
address the full development
cycle. It includes graphical
user-interface (GUI) modeling
facilities, as well as server
design and generation capabil-
ities based on client/server
development techniques creat-
ed by LBMS.

SE/Open for Delphi is sched-
uled to be available during the
first half of 1995 and sold joint-
ly by LBMS and Borland. It is
priced at US$10,000 per server.
Novell’s Tuxedo Products Support Delphi

Summit, NJ — Novell, Inc. has
announced a business relation-
ship between its Tuxedo prod-
uct line and Borland
International, Inc., enabling
Tuxedo products to support
Delphi. Tuxedo is an applica-
tion development and run-time
architecture for implementing
client/server applications and
components of the enterprise
computing solution set, includ-
ing NetWare and UnixWare.

With Tuxedo, programmers
can currently choose from 35
platforms and can operate with
all clients on today’s market.
Tuxedo and Delphi together
provide rapid application
development and client/server
scalability to create a software
development environment for
programmers producing line of
business applications.

Tuxedo System 5, the latest
release of Tuxedo, gives pro-
grammers the flexibility to
deploy large distributed systems
and easily expand or change
their system with one of
Tuxedo’s newest features,
/Domains. With /Domains,
programmers can manage
Tuxedo servers in administra-
tively autonomous groups
called domains, and set parame-
ters for the interactions between
domains. Tuxedo System 5 also
extends Tuxedo interoperability
to include DCE and other non-
Tuxedo environments.

Tuxedo system provides an
architecture for implementing
business applications in dis-
tributed, client/server environ-
ments. Tuxedo is also a trans-
action processing environment
that provides electronic com-
merce for the banking,
telecommunications, finance
and retail industries.
Delphi INFORMANT ▲ 6

Borland Launches World Wide Web Site
 News
L I N E

P r e m i e r e I s s u e
Scotts Valley, CA — Borland
International Inc. has estab-
lished an Internet World
Wide Web (WWW) site,
Borland Online. Currently
up and running, it is
designed to grow into a com-
prehensive resource for
Borland developers, providing
access to everything from the
PREMIERE ISSUE
latest product information
and technical documents to
information on seminars and
training locations. Borland
Online can be accessed on
the Internet WWW at
http://www.borland.com.

Borland Online includes links
to Borland’s existing Internet
FTP (File Transfer Protocol)
site. Borland Online services
include: news, company infor-
mation, technical information,
product information, program
services, feedback, and files.
For more information about
Borland Online, contact
Cindy Martin at webmanag-
er@borland.com.
TurboPower Acquired by Casino Data Systems, Plans Delphi Tools
Starfish Software
began shipping
Sidekick 2.0 on
March 1.
Colorado Springs, CO —
TurboPower Software has
announced that it was
acquired by Las Vegas-based
Casino Data Systems.
TurboPower will continue to
develop and market pro-
gramming tools and compo-
nents for Pascal and C++
programmers. It will operate
in Colorado Springs,
Colorado as TurboPower
Software Company, a whol-
ly-owned subsidiary of
Casino Data Systems. In
addition, it will retain its
existing staff and immediate-
ly seek to hire additional
programmers and support
staff, particularly in the area
of Delphi components.

Mr. Kim Kokkonen, founder
of TurboPower and current
President of TurboPower
Software Company, said the
market for Windows program-
ming components has grown
faster than their ability to
support it, and that the acqui-
sition provides new opportuni-
ties for TurboPower Software.
Specifically, he said Borland’s
Delphi compiler will expand
the need even further and
their experience with Pascal
will enable TurboPower to
produce Delphi components.

Casino Data Systems is using
Borland’s Delphi as the develop-
ment platform for its new
Windows-based OASIS system
scheduled for general release dur-
ing the third quarter of 1995.
Borland Sells Sidekick, Dashboard to Starfish

Scotts Valley, CA — Borland
International Inc. has
announced the sale of its
consumer software products,
Sidekick for Windows and
Dashboard for Windows, to
Starfish Software [see sepa-
rate news item on this page].
Borland also announced it
has discontinued its
Simplify consumer products
division. According to
Borland president Gary
Wetsel, the company will
focus on the software devel-
oper market, and the
Borland Simplify division
was not consistent with
these plans.
As part of the transaction,
Borland will receive a minority
equity position in Starfish
Software, but will not be
involved in the management
or operation of the venture. In
addition, a majority of
Borland Simplify’s 35 employ-
ees will be offered positions
with Starfish Software.

Starfish Software will now sup-
port Sidekick and Dashboard
customers, as well as contractual
obligations. As part of the agree-
ment, Borland retains the rights
to bundle Sidekick and
Dashboard with its other prod-
ucts through September 1995.
Kahn Announces Starfish Software

Santa Cruz, CA — Philippe
Kahn has announced a new
software venture, Starfish
Software, to be located in
Santa Cruz, California.

According to Kahn, Starfish
Software was created to devel-
op simple, high-quality tools
for PC users worldwide.
Specifically, Kahn noted the
increasing interest in the
Internet and said Starfish
products will “pioneer elec-
tronic commerce across the
Internet.” Kahn will serve as
Chairman of Starfish
Software, and remain
Chairman of Borland
International. He will also
continue to serve in an adviso-
ry role in Borland’s long-term
strategic planning and tech-
nology division.
Kahn also announced that
Starfish Software has pur-
chased Sidekick for
Windows and Dashboard for
Windows from Borland
International.

Although the terms of the
purchase were not released,
Borland International will
receive a minority equity
position in Starfish Software.
Delphi INFORMANT ▲ 7

PREMIERE ISSUE

Delphi: A Visual Tour
Getting to Know the Neighborhood

Know thyself. — Inscription at Delphi

Visual Programming
Delphi / Object Pascal | Beginner

By Doug Horn
T wenty-five hundred years ago, Delphi was a city in Greece, famous for its
enigmatic oracle of Apollo. Today, Delphi lends its name to a new and
robust software development system. Because it’s so new, the Delphi of

today is nearly as mysterious as the city of legend.

The power of Delphi adds new muscle to visual programming. It includes full database and SQL
compatibility with simplified programming, yet Delphi also allows developers to create custom
DLLs and components — something never possible with Visual Basic.

But before developers can take advantage of Delphi, they must first understand it. Although some
components of the Delphi interface may be familiar to many users, others may be completely
unknown. This article will walk new users through Delphi, point out some of its more important
elements, and explain how they work.
Essential Delphi Elements
All tours of Delphi must begin at its desktop, shown in Figure 1. This is Delphi’s main interface,
and the only portion of the program that must always be running. It includes the menu, SpeedBar,
Component Palette, Object Inspector, and a blank form.

Delphi’s menu is similar to most Windows applications. It controls generic functions such as open-
ing files, searching for text strings, and viewing program windows. The menu also performs many
tasks distinctive to Delphi. For example, you can compile, debug, and run Delphi applications,
customize the Delphi environment, and launch Delphi-related tools.

Delphi also offers SpeedMenus (pop-up menus) that include commonly used design commands.
To access a SpeedMenu, you can right-click on the SpeedBar, Component Palette, Code Editor, or
on any component.
The SpeedBar
The SpeedBar is below and to the left of the menu. This group of buttons allows instant access to a
number of program functions. SpeedBar buttons (and Component Palette buttons) have
bitmapped icon images instead of labels. If a button function is unclear from its picture, resting the
mouse pointer over the button will call up a Help Hint with a short description. (Help Hint is the
Delphi term for what is commonly known as “balloon help”.)
Delphi INFORMANT ▲ 8

Figure 1: Delphi as it appears when first opened in its default aspect.

Object
Inspector SpeedBar

Blank Form
Component Palette

Visual Programming
The SpeedBar contains
buttons for simple file
management — includ-
ing creating, opening, or
saving a new project or
other file — and other
basic functions. The
SpeedBar is fully config-
urable. To add, remove,
or reposition command
buttons on the
SpeedBar, right-click
anywhere on the
SpeedBar and select
Configure from the
SpeedMenu. This calls
the Speedbar Editor dia-
log box (see Figure 2)
and puts the SpeedBar
in configure mode.

Now you can reposition
buttons by dragging
them to another location
on the SpeedBar, or
remove them by drag-
ging them off the
SpeedBar. To add new
command buttons, select
the appropriate category

and command from the Speedbar Editor list boxes, then drag
the command icon to a position on the SpeedBar. You can
return the SpeedBar to its shipping defaults by clicking the
Reset Defaults button.

You can also resize the SpeedBar. Place the mouse pointer over
the separator bar between the SpeedBar and the Component
Palette, and the pointer becomes a bi-directional arrow. Click
and drag the separator bar to expand or shrink the SpeedBar as
needed. You can remove the SpeedBar altogether by selecting
PREMIERE ISSUE

Figure 2: In the Speedbar Editor dialog box, you can add, remove, or
reposition SpeedBar buttons.
Hide from its SpeedMenu. To replace it, select View | Speedbar
from the Delphi menu.
The Component Palette
Another essential element of Delphi is the Component
Palette, located below the menu and next to the SpeedBar.
The Component Palette has eight pages that are selected by
clicking on their respective tabs. The first page — named
Standard — is shown in Figure 3. It contains standard
Windows controls that you can simply select and apply to a
form using the mouse.

Other pages of the Component Palette take the idea further. The
Additional page for example, contains components for bitmap
buttons, speedbar buttons, graphic images, shapes, a scrollbox,
etc. Also of interest are the TabSet, Notebook, and
TabbedNotebook components used to create a tabbed, paged
interface like that of the Component Palette itself.

The System page has components for a timer, file list box,
directory list box, drive combo box, multimedia control, and
OLE and DDE components. Among other things, these com-
ponents make it short work to create a multimedia applica-
tion, or add OLE and DDE capabilities to your applications.
[An example of a multimedia application created with Delphi
is presented in Kenn Nesbitt’s article “A PC Sound Garden”
beginning on page 26.]
Delphi INFORMANT ▲ 9

Figure 3: The Standard
page of Delphi’s
Component Palette.

Figure 4: The Data
Access page of the
Component Palette.

Figure 5: The Data
Controls page of the
Component Palette.

MainMenu

Label

Memo

ScrollBarCheckBox

ListBox RadioGroup

PopupMenu

Edit

Button

GroupBoxRadioButton

ComboBox Panel

DataSource

Query

Database

Report

DBGrid

DBText

DBMemo

DBList Box

Table
StoredProc

BatchMove

DBNavigator
DBEdit DBCombo Box

DBImage

Visual Programming
Database developers will be
particularly interested in the
Component Palette’s Data
Access and Data Controls
pages (see Figures 4 and 5
respectively). The Data
Access page contains com-
ponents that describe the
source of data: Database,
Table, and Query. It also
contains a special compo-
nent, DataSource, that acts
as a conduit between these
data repositories and a
form’s user-interface compo-
nents.

The Data Controls page
contains the data-aware
equivalents of many of the
components on the
Standard page. For example:
DBLabel allows you to place
a table-driven label on a
form; DBEdit is a standard
edit field that is tied to a
particular field in a table or
view; DBNavigator is a
VCR-style table navigation
control; and DBImage dis-
plays a graphic stored in a
table. [An example of these
components at work is pre-
sented in Dan Ehrmann’s
article “Data-Aware Delphi”
beginning on page 21.]

The Samples page contains
Figure 6: The Component Palette can be configured via the Palette
page of the Environment Options dialog box.
custom components (e.g. gauges, a spinbutton, a calendar, etc.).
The Dialogs page contains ready-made dialog boxes for opening
a file, saving a file, searching for a file, font selection, printer
setup, etc. A VBX page is available for adding your favorite VBX
controls. (Four are provided to get you started.)

Like the SpeedBar, the Component Palette can be configured.
You can add and remove components from each page, rearrange
their order, and even add, remove, or rename pages. To configure
the Component Palette, right-click anywhere on the Component
Palette and select Configure from the SpeedMenu. The
Environment Options dialog box will appear with its Palette
page displayed (as shown in Figure 6).

Notice the Pages and Components list boxes. The page
order can be changed by selecting a page and dragging it to a
new position in the Pages list box. You can also reorder the
pages by highlighting a page and clicking the up or down
arrow buttons.
PREMIERE ISSUE Delphi INFORMANT ▲ 10

Visual Programming

Figure 7: Selecting a form template from the Browse Gallery.
To rename a page, simply click the Rename button and the
Rename page dialog box will prompt you for a new name. Use
the Add and Delete buttons to create or remove tab pages.
Tab pages must be emptied of all components before they can
be deleted.

You can also remove a component by selecting it in the
Components list and clicking the Delete button. Components
deleted in this fashion are still available to be added to any page
of the Component Palette. To replace a deleted component,
click [Library] in the Pages list box. All components in the
component library will be displayed in the Components list
box. To re-add a deleted component, drag it from the
Components list box and drop it on the desired page in the
Pages list box.

A component can only be on one page at a time. Components
can be reordered on the page (in the same manner as pages are
reordered), and dragged from one page to another. To do this,
select a component in the Components list box and drag it over
the name of the destination page in the Pages list box. Click the
OK button to accept the changes, or the Cancel button to reject
the changes. The Reset Defaults button restores the Component
Palette to its “factory settings”.

Installing a component is an altogether different operation and
outside the scope of this article. [For a step-by-step description,
see Gary Entsminger’s article “Approaching Components” begin-
ning on page 15.] Installing a Visual Basic (VBX) component is
a similar process.
Forms
Delphi is a visual programming environment, and characteristi-
cally, visual programming is based on forms. Delphi can create
programs without forms (e.g. DLLs), but most Delphi applica-
tions use forms as their main interface.

A form is a canvas containing all the components an application
uses. It is therefore, the primary portion of the programming
interface. When Delphi starts, it automatically opens a blank
form (as shown in Figure 1). You can start building your applica-
tion immediately by dropping components on the form.

To place a component on a form, click the corresponding com-
ponent on the Component Palette. For example, to place a
Button component on a form, click the Button component on
the Component Palette and then click again anywhere on the
form. Or, simply double-click a component to place it in the
center of the form. Press V before clicking on a component to
place multiple instances of the same component on the form.

Once placed, user-interface components (i.e. controls) like a
Button can be easily moved and resized with the mouse. Non-UI
components, such as a DataSource component, cannot be resized.

You can create a new form by selecting File | New Form from the
menu or by clicking on the New Form button on the SpeedBar.
PREMIERE ISSUE
However, rather than opening blank forms and designing them
from scratch, Delphi users can use form templates.
Form Templates
Many forms have standard functionality and contain common
user-interface elements. For example, many simple dialog boxes
display a message and feature OK, Cancel, and Help buttons.

Form templates are pre-built forms made available in a Browse
Gallery dialog box (as shown in Figure 7). The “Standard dialog
box template” for example (seen in the middle of the dialog
box), creates the dialog box just described. To complete this
form, a developer only has to add the appropriate text to it at
design or run-time.
To use form templates, the Browse Gallery must be enabled. It’s
enabled by default when Delphi is shipped. That is, the Browse
Gallery is displayed whenever File | New Form is selected from
the menu. This is controlled on the Preferences page of the
Environment Options dialog box. Within the Gallery group
box, select the Use on New Form check box.

You can also reorder, edit, delete, and add form templates that
appear in the Browse Gallery. To do this, select Options |
Gallery from the menu to display the Gallery Options dialog
box. The selection of Delphi form templates will be displayed on
the Form Templates page (as shown in Figure 8). You can desig-
nate which form will be the default by selecting it and clicking
the Default Main Form button.

You can also modify an existing form template or create a new
form and add it to the Browse Gallery. After changing or creat-
ing a form, simply save it by selecting Save As Template from
the SpeedMenu or Edit | Save As Template from the menu.
The Object Inspector: Properties
A Delphi application consists of components. Buttons, labels,
combo boxes, queries, etc., are all components. The Component
Palette contains the blueprints or classes of components. When
you select a component on the Component Palette, Delphi cre-
ates an object based on that component’s class.
Delphi INFORMANT ▲ 11

Visual Programming

Figure 8: The Form Templates page of the Gallery Options dialog box.
Each component in a Delphi application has properties that
describe its appearance and functionality. For example, a Button
has properties that affect its appearance (e.g. Height, Width, and
Caption). Other properties, such as the button’s Name (e.g.
Button1) are transparent to the user, but provide important infor-
mation to the application.

Components are defined by their properties and controlled by
their methods. The bulk of a Delphi application’s program code
manipulates component properties. At design time, a selected
object’s properties are displayed in the Object Inspector (shown
in Figure 9). Here, developers can modify properties that imme-
diately affect the component’s appearance or behavior.
Figure 9: The Object Inspector allows component properties and events to be controlled during
project design time. As you can see, the Object Inspector has two tab pages: Properties and
Events. Use the Properties page to alter the characteristics or appearance of a component. Use
the Events page (shown in Figure 10) to alter a component’s associated events.

Property
Column

Value
Column

Nested
roperty

Object
elector
For example, you can change a
button’s Caption property by
simply clicking on that property
in the Object Inspector and
typing a new caption in the
Value column. The new value
will be reflected in the button as
it is typed. Properties with a
finite list of choices, such as
Cursor (which determines the
shape of the mouse pointer),
provide a drop-down list of
options (e.g. crIBeam,
crHourGlass, and crArrow).

Other properties (e.g. Font)
themselves contain properties,
called nested properties (e.g.
Name, Pitch, and Size for the
Font properties). Properties with
nested properties are indicated
by a plus sign (+) in the
Property column. Double-click
on such a component to expand
the Property column to display
the nested properties. You can

P

S

PREMIERE ISSUE
also double-click the Value column to display the appropriate
dialog box.

To select a component for inspection, click on it. It then has
focus in the Object Inspector (i.e. the name of the component is
shown in the Object selector). Another way to select a compo-
nent is to click the Object selector’s down arrow and select the
component from the provided drop-down list.

You can select several components at once by holding down V
and clicking on each component. When multiple components
are selected, the Object Inspector displays only the shared prop-
erties. If all components are the same (e.g. all buttons) the
Object Inspector will show all properties (except for Name and
TabStop which must be unique to each component).

However, if the components are different — say a Label and an
Edit component — the Object Inspector will omit properties
that are unique to each component (such as ReadOnly and Text
which apply only to the Edit component). When multiple com-
ponents are selected, changing any properties will set those prop-
erties for all components selected. For example, changing the Top
property for several components aligns the top of each compo-
nent to the same line.

It’s also important to remember that Delphi is a two-way
tool. That is, just as changing a property on the Object
Inspector — such as Top or Width — changes the position
or size of the component on the form, dragging the compo-
Delphi INFORMANT ▲ 12

Visual Programming
nent with the mouse will update new properties in the
Object Inspector.
The Object Inspector: Events
In Delphi, components are only half the story. The other half
are events. An event is anything that can happen to a compo-
nent — for example, the mouse pointer entering a component,
a button being pushed, a form opening or closing, or editing
the value in an edit box. Every component has certain events
associated with it. Some, such as OnClick, are common to all
components, while others may be specific to a group of compo-
nents or even a single component.

The Events page of the Object Inspector shows the events associat-
ed with each component (see Figure 10). This page is much like the
Properties page, in that it allows you to select multiple components
and displays only the events common to the selected components.
Figure 10: Event handler code is generated automatically by double-
clicking the desired event in the Value column in the Object Inspector.

Figure 11: The Code Editor acts as a traditional text editing program,
with several smart capabilities added for good measure.
Initially, the values of all events are blank. This indicates that no
event handler has been attached to any portion of the form. An
event handler is a block of Object Pascal code that describes how
a component will respond to an event.

To create a Delphi event handler, select a component. Next,
choose an event and double-click on the Value column. The
Code Editor will appear as shown in Figure 10. Alternatively,
double-clicking a component creates an event handler for the
most common events to occur for that type of component
(e.g. OnClick for buttons).

Once an event handler is created, Delphi places the preliminary
statements into the program’s code listing. Figure 10 shows the
code for a button’s OnClick event with the cursor on the line
between begin and end. Now the developer only needs to write a
few lines of code that actually performs the event.

When an event handler is created for multiple components, it
applies to all of them. However, rather than creating an event
handler for Button1, Button2, and so on, Delphi can reference
multiple events to the same event handler. These are called
shared events. Events may be shared by multiple components,
such as the OnClick event of both a button and menu item call-
PREMIERE ISSUE
ing the form to close. Events can also be shared within a single
component, such as the OnEnter and OnExit events of a field
triggering the same block of program code. [A shared events
example is presented in Dan Ehrmann’s article “Data-Aware
Delphi” beginning on page 21.]
The Code Editor
Program code is edited via the Code Editor (Figure 11). The
Code Editor lists program code from the unit file of each open
form. This unit file contains all the information — from variable
and uses declarations to event handler code — necessary to build
and perform the functions on a form. The code for each open
form is listed on a separate page within the Code Editor.
When you create a new form, the Code Editor also creates a new
unit file with a .PAS extension, containing the Object Pascal code
for the form. As new components and events are added to the
form, the Code Editor tracks these and adds additional code to
the unit file. This code, along with code added by the user, creates
the program. New units can also be created independent of forms
when no forms are necessary (e.g. creating customized compo-
nents, etc.) using the File | New Unit command from the menu.
In many ways, the Code Editor acts as a traditional text editor,
but it also has several advanced capabilities. First, of course,
the Code Editor adds program code automatically to declare
new types as new components and event handlers are added.
Delphi INFORMANT ▲ 13

Visual Programming
The Code Editor also recognizes reserved words and other
types of programming structures, and uses different colors and
font attributes to make the code easier to read and understand.

In addition, the Code Editor is fully configurable. As with con-
figuring the Component Palette, selecting Options |
Environment from the menu calls the Environment Editor. The
Environment Editor has three pages pertaining to the Code
Editor: Editor options, Editor display, and Editor colors (shown
in Figure 12). Using the options on these pages allows you to
control and customize a variety of functions to make the Code
Editor as easy to use as possible.
Figure 12: The Code Editor is highly configurable, as evidenced by the
Editor colors page of the Environment Options dialog box.

Figure 14: The Compiler page of the Project Options dialog box. You
have great freedom to configure how to compile code, link source
code, debug files, and much more.
The Project Manager
Delphi groups every application as a project. A project can consist
of anything from dozens of form, unit, and database files, to a
single unit file. However, every application will be a single pro-
ject and only one project can be open at a time.

The Project Manager (Figure 13) tracks all the files in a project
making it easy to open a form or unit file. It also allows users to
add or remove files from an existing project. This is a strength,
because it allows developers to create form and unit files they can
reuse in multiple applications without additional programming.

To view the Project Manager, select View | Project Manager
from the Delphi menu. The Project Manager consists of a
PREMIERE ISSUE

Figure 13:
The Project

Manager
keeps track of

forms and
files that

make up a
project.
SpeedBar at the top, project files in the middle, and a unit list at
the bottom. The Project Manager SpeedBar buttons allow for
project file management.

New or existing projects can be opened by selecting File | New
Project or File | Open Project from the menu, or using the Project
Manager SpeedBar buttons. Because only one project can be open at
any time, the existing project will be closed before another is
opened. Each project has a project file (with the extension .DPR),
listing the forms included in the project, and which form opens first
(i.e. the main form). When a project is created or edited, this code is
generated and updated automatically by the Project Manager.

Another important function of the Project Manager is its ability
to track the myriad options for configuring project options.
Clicking on the Project Manager’s check box, SpeedBar button,
or selecting Options | Project displays the Compiler page of the
Project Options dialog box (shown in Figure 14). Here, the
developer can configure run-time error checks, enable specific
syntactical checks, and customize debugging functionality.
Conclusion
Delphi is a remarkable programming environment that promises
to leave its mark on application development. It combines the
power of a language compiler, the ease of a visual programming
system, and the data control of a desktop database.

And now it’s time to begin your Delphi adventure. ∆
Delphi INFORMANT ▲ 14

Douglas Horn is a freelance writer and computer consultant in Seattle, WA. He special-
izes in multilingual applications, particularly those using Japanese and other Asian
languages. He can be reached via CompuServe at 71242,2371.

PREMIERE ISSUE

D
(
t
r

L
m
•
•
•
•

I
c

Approaching Components
An Introduction to Delphi Component Creation at Run-time

The Way of Delphi
Delphi / Object Pascal | Intermediate

By Gary Entsminger

But that, Socrates, Critias said, is impossible,
and therefore if this is, as you imply, the necessary consequence
of any of my previous admissions, I will withdraw them
and will not be ashamed to acknowledge that I made a mistake,
rather than admit that a man can be temperate or wise
who does not know himself. For I would almost say that self-knowledge
is the very essence of temperance, and in this I agree with him
who dedicated the inscription “Know thyself!” at Delphi. — Plato
uring a recent lecture, I explained how this epigraph from Plato’s
Charmides foreshadowed Windows programming 1995-style. I used
necessary consequences (programming logic), previous admissions

ancestry and program hierarchies in OOP), not being ashamed to make mis-
akes (revising objects), and Delphi (today’s state-of-the-art development envi-
onment) as evidence.

ater, I suggested an example of Delphi’s component creation capability. The example would illu-
inate a few key issues of basic component development, such as how to:

create properties and methods
control access to properties
read and write component properties
invoke (or send messages to) component methods

n this article, we’ll do exactly that. We’ll create several very simple components, and learn a few
omponent development basics along the way.
Creating Components
Components are the building blocks of Delphi applications. You build an application by adding
components to forms and using the properties, methods, and events of the components. All com-
ponents have the Name and Tag properties in common. Most components are available from the
Component Palette. Some components (TApplication, TMenu, TMenuItem, and TScreen) are avail-
able only through code.

You create a new component using these three general steps:
1) Derive a new component object from an existing component
2) Modify the component
3) Register the component
Delphi INFORMANT ▲ 15

The Way of Delphi
Although each component in this project resides in a separate unit,
you can put more than one component in a unit. After you create
a component, compile and install it onto the Delphi Component
Palette. To use the component, select it from the Component
Palette and add it to a form.

Let’s begin by creating a new project by selecting File | New
Project from the menu. Delphi will automatically create a form
and unit. We don’t want them for our task, so close them with-
out saving them. Then save the project as PropDemo.DPR.

The next step will be to create a component. But first, let’s discuss
components in general and their place in Delphi development.
Figure 1: Using
the Component
Expert to create a
new component
of type
TComponent.

Figure 2: The
PAS file
created by the
Component
Expert in
Figure 1. This
Object Pascal
code will
create a
component
named
CustComp1
and place it
on the
Custom page
of the
Component
Palette.
The TComponent Class
You can create a new component directly in Object Pascal code
using the Code Editor, or you can use the Component Expert.
Since you will always derive a new component from an existing
one, the Component Expert saves time by providing a template
based on the selected ancestor component. The Component
Expert uses this ancestor component to determine the basic
behavior of the new component.

For example, if you want a bare-bones component, derive the
new component from TComponent. The TComponent type is the
abstract starting point for all components. Every item used in the
Form Designer is a descendant of TComponent. It gives its
descendants the basic properties and behavior necessary to inter-
act gracefully with Windows.

If you want a new component to have more than basic
TComponent behavior, select an ancestor at a different level in the
TComponent hierarchy. A TControl component, for example, is the
abstract base type for all controls. Controls are visual components,
meaning the user can see and manipulate them at run-time.

The TControl class supplies all the properties, methods, and
events that any control needs. Properties, methods, and events
required by all controls have been declared as public and appear
in all controls. Other items that might be useful to controls have
been declared as protected. This means that you can publish
them in the components you derive from TControl or one of
TControl ’s descendant types. [For more information about the
public and protected directives, see Jim Allen and Steve Teixeira’s
article “Component Basics” beginning on page 44.]

Delphi supplies over 70 pre-defined descendants of TControl, for
example — TBitBtn, TButton, TCheckBox, TColorDialog,
TComboBox, TFontDialog, TForm, TGroupBox, THeader, TImage,
TLabel, TListBox, TMainMenu, and TMediaPlayer. You can derive
as many more new TControl descendants as you want.

Delphi makes it easy to start at the most convenient level you
need. As already mentioned, if you need a bare-bones compo-
nent, start with TComponent. If you need a more complex
component that’s similar to an existing component, begin
with it. For example, if you need a new kind of label, begin
PREMIERE ISSUE
with TLabel. If you need a new kind of memo, begin with
TMemo, and so on. A rule of thumb is to take as much
behavior as you can from an ancestor, but don’t take anything
you don’t want. It’s awkward to remove behavior once you’ve
derived a new component.
The Simplest Component
In this project, to make it easier to focus on how a component
works, we’ll start with the most basic component —
TComponent. Open the Component Expert by selecting File |
New Component from the menu and derive the first compo-
nent. As shown in Figure 1, enter the following parameters in
Component Expert dialog box:
• Class Name — CustComp1
• Ancestor Type — TComponent
• Palette Page — Custom
Click on the OK button to accept these entries. The Component
Expert automatically creates the Object Pascal code shown in
Figure 2 in a unit called Unit1. Every support file that a new
TComponent type needs is added to the uses clause.

The component file — Unit1.PAS — even has the code necessary
to register itself in the component library. Pretty slick, Socrates.
Delphi INFORMANT ▲ 16

The Way of Delphi
Adding a Component to the Palette
If you add the new component, as is, to the Component Palette,
it will have two default properties: Name and Tag. Let’s go
through the steps.

First, rename the PAS file to Cust1.PAS by selecting File | Save
File As from the menu to display the Save As dialog box. The next
step is to add the component to the Component Palette. This is
accomplished at the Install Components dialog box accessed by
selecting Options | Install Components from the menu. At the
Install Components dialog box, click on the Add button to display
the Add Module dialog box. Then use the Browse feature to locate
the PAS file, as shown in Figure 3. Cust1 will be added at the bot-
tom of the Installed Units list box and its path will be added to
the Search path edit box in the Install Components dialog box.
Figure 3: Installing a component on the Component Palette.
Finally, click OK to recompile the Component Palette. After a
quick compile, a new page (Custom) will be added to the
Component Palette, and the new component (CustComp1) will
be on the page (see Figure 4). That’s it! You’ve placed a custom
— albeit primitive — component on the Component Palette.

You can try out the new component by creating a new form and
placing the CustComp1 component on the form (as shown in
Figure 4). As you can see in the Object Inspector, CustComp1
has just two (the minimum) properties: Name and Tag.

This component — real as it is — doesn’t do much. You can
think of it as a rather dim-witted component, capable of telling
you its name and the value of one integer held in its Tag proper-
ty. However, it does know how to interact gracefully with
Windows, and that’s worth the price of admission. From this
humble starting point, you can easily give it the properties and
behaviors it needs to be more useful.
Figure 4: The properties of a new CustComp1 component are shown
in the Object Inspector.
Creating a Property
Let’s modify this generic component by adding a property. To
declare a property, specify the:
• property’s name,
• property’s type,
• and object fields for reading and/or writing the property.
PREMIERE ISSUE
Although Delphi doesn’t restrict how you store the data for a
property, it’s a good idea to store the property data in an
object field (variable) that you declare in the private declara-
tions part of the class. We’ll use an object field of type Integer
named FDemoProp:

private
{ Private declarations }
FDemoProp: Integer;

The following Object Pascal statement creates a property
(DemoProp) with a value that can be read from and written to
the FDemoProp field:

property DemoProp: Integer read FDemoProp
write FDemoProp;

Note that while the property’s name is DemoProp, the object
field that will hold the property’s value is named FDemoProp.
The initial “F” conforms to the naming convention for property
object fields.

Although you can declare fields and read and write methods for
a property as private or public, you should declare them as pri-
vate. Private declarations force descendant components to use
the inherited property for access, instead of using the access
method directly. Here’s the revised class declaration:

type
Comp2 = class(TComponent)
private

{ Private declarations }
FDemoProp: Integer;

protected
{ Protected declarations }

public
{ Public declarations }
property DemoProp: Integer read FDemoProp

write FDemoProp;
published

{ Published declarations }
end;

The entire listing is shown in Figure 5. This is the simplest way to
declare a property, known as direct access. That is, no method is used
Delphi INFORMANT ▲ 17

Figure 5: The Object Pascal code for the CustComp2 component
(Cust2.PAS). The component will now have a property, DemoProp.

unit Cust2;

interface

uses
SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs;

type
CustComp2 = class(TComponent)
private

{ Private declarations }
FDemoProp: Integer;

protected
{ Protected declarations }
public

{ Public declarations }
property DemoProp: Integer read FDemoProp

write FDemoProp;
published

{ Published declarations }
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Custom', [CustComp2]);
end;

end.

The Way of Delphi
to read or write the property’s value. All that’s required are two state-
ments — a type declaration for the object variable, FDemoProp, and
a property statement to describe how the property is accessed.

Save the modified unit as Cust2.PAS and follow the steps
described above to add the component to the Component
Palette. Then create a new form and place the new CustComp2
component on the form (as shown in Figure 6).

But what’s wrong? The new property (DemoProp) doesn’t appear
in the Object Inspector. This is because we made the property
declaration in the public part of the component type declaration.
Such a property is available only at run-time. That is, it can be
accessed only through Object Pascal code.
PREMIERE ISSUE

Figure 6 (Left): The CustComp2 component on a form at design-time.
was not published. Figure 7 (Right): The CustComp3 component at de
the Object Inspector.
The public declarations part of a class corresponds to its run-
time interface. In other words, public declarations are available
to all code in a project at run-time. If you only want a property
or method to be available at run-time, declare it in the public
part of the class. If you want a property to be available in design
mode as well, you must publish it.

A published declaration is just like a public declaration, except
other applications can get information about published proper-
ties, methods, and events through the published interface. The
Delphi Object Inspector uses the published interface of objects
installed in the Component Palette to determine the properties
and events it displays.

Therefore, to make the property available during design-time
(i.e. in the Object Inspector), it must be published. This is easily
done by moving the property declaration into the published por-
tion of the component type declaration. The class declaration
now looks like this:

type
Comp3 = class(TComponent)
private

{ Private declarations }
FDemoProp: Integer;

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }
property DemoProp: Integer read FDemoProp

write FDemoProp;
end;

Let’s take a look. Save the modified unit as Cust3.PAS and add
the component to the Component Palette. Then create a new
form and place the new CustComp3 component on the form (as
shown in Figure 7). There’s the new property, DemoProp, avail-
able for modification in the Object Inspector.

As stated earlier, this is the simplest way to declare and access a
property. It’s also possible to read and write a property’s value
using functions and procedures known as access methods.
Delphi INFORMANT ▲ 18

 The new property isn’t displayed in the Object Inspector because it
sign-time. The published property — DemoProp — now appears in

The Way of Delphi

unit Cust4;

interface

uses
SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs;

type
CustComp4 = class(TComponent)
private

{ Private declarations }
FDemoProp: Integer;
function GetDemoProp: Integer;
procedure SetDemoProp(Val: Integer);

protected
{ Protected declarations }

public
{ Public declarations }

published
{ Published declarations }
property DemoProp: Integer read GetDemoProp

write SetDemoProp;
end;

procedure Register;

implementation

function CustComp4.GetDemoProp;
begin

{ Return the value of the FDemoProp field }
{ In a more complex example, add other code here }
Result := FDemoProp;

end;

procedure CustComp4.SetDemoProp(Val: Integer);
begin

{ Set a new value for the FDemoProp field }
FDemoProp:= Val;

end;

procedure Register;
begin

RegisterComponents('Custom', [CustComp4]);
end;

end.
Access Methods
Instead of accessing a property’s value directly, as just demon-
strated, it’s also possible to use a method. This is useful when
you need to perform some other programming task while read-
ing or writing a property value (for example, setting a valid range
of values for the property).

First, let’s write the method (a function) to read the property,
named GetDemoProp by convention:

function Comp4.GetDemoProp;
begin

{ Return the value of the FDemoProp field }
{ In a more complex example, add other code here }
Result := FDemoProp;

end;

Here’s the method (a procedure) to write a new value to the
property, named SetDemoProp by convention:

procedure Comp4.SetDemoProp(Val: Integer);
begin

{ Set a new value for the FDemoProp field }
FDemoProp:= Val;

end;

The complete unit listing (Cust4.PAS) is shown in Figure 8.
Notice that all it takes to have Delphi use the access methods is
to name them in the property statement:

property DemoProp: Integer read GetDemoProp
write SetDemoProp;

We’ve declared DemoProp, GetDemoProp, and SetDemoProp in the
private section of the class declaration. Making these private pro-
tects them from unintentional modification and forces descendent
components to use the inherited property, DemoProp, for access.

Use Options | Install Components to install this new component
(CustComp4), and then place it on a form. Note that this new
component behaves just like the component in Figure 7
(CustComp3). The fact that access methods are now used to access
the DemoProp property is transparent to the component user.
Figure 8 (Top): The Cust4.PAS file with access methods for reading and
writing the DemoProp property. Figure 9 (Bottom): The demonstration
form in design mode.
Invoking Component Methods
To complete this introduction to components, let’s create a form
that puts one of them to work. Select File | New Form to create a
new blank form. Then add two buttons, a label, and the
CustComp3 component to the form. Then, change the captions of
the buttons to Read DemoProp and Write DemoProp. Remove the
Label caption. Figure 9 shows this form in design mode.

Now implement the OnClick events for the two buttons. The
first button click event reads the DemoProp property:

procedure TForm1.Button1Click(Sender: TObject);
var

DemoProp: Integer;
S: string;

begin
DemoProp := CustComp31.DemoProp; {Read the property}
Str(DemoProp,S);
Label1.Caption := 'DemoProp Value Read: ' + S;

end;
PREMIERE ISSUE Delphi INFORMANT ▲ 19

unit Custdemo;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, Cust3;

type
TForm1 = class(TForm)

Button1: TButton;
Button2: TButton;
CustComp31: CustComp3;
Label1: TLabel;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{ $R *.DFM }

procedure TForm1.Button1Click(Sender: TObject);

var

The Way of Delphi
The OnClick event for Button2 uses an InputBox to get a new
DemoProp property value from a user at run-time.

procedure TForm1.Button2Click(Sender: TObject);
var

DemoProp, Code: Integer;
S: string;

begin
DemoProp := CustComp31.DemoProp; { Read the property }
Str(DemoProp,S);
S := InputBox(Enter New Value’,DemoProp’,S);
Val(S,DemoProp,Code);
{ Error during conversion to integer? }
if code <> 0 then

MessageDlg('Error at position: ' + IntToStr(Code),
mtWarning, [mbOK],0)

else
begin

Label1.Caption := 'DemoProp Value Written: ' + S;
CustComp31.DemoProp := DemoProp;

end;
end;

Note the little bit of error checking to insure that a user has
entered a number before attempting to change the property
value. This isn’t really necessary. Delphi actually handles this
bit of error checking for you. But in other situations you
might want to filter input, for example to ensure that a num-
ber falls within a range of numbers. The code for the form
unit is shown in Figure 10.
DemoProp: Integer;
S: string;

begin
DemoProp := CustComp31.DemoProp; { Read the property }
Str(DemoProp,S);
Label1.Caption := 'DemoProp Value Read: ' + S;

end;

procedure TForm1.Button2Click(Sender: TObject);
var
Figure 11 shows the form at
run-time. This form uses
CustComp3, but it could
have been constructed using
CustComp2 or CustComp4
as well. The run-time behav-
ior will be the same.
 DemoProp,Code: Integer;

S: string;
begin

DemoProp := CustComp31.DemoProp; { Read the property }
Str(DemoProp,S);
S := InputBox('Enter New Value','DemoProp',S);
Val(S,DemoProp,Code);
{ Error during conversion to integer? }
if code <> 0 then

MessageDlg('Error at position: ' + IntToStr(Code),
mtWarning,[mbOK],0)

else
begin

Label1.Caption := 'DemoProp Value Written: ' + S;
CustComp31.DemoProp := DemoProp;

end;
end;

Figure 11: The demonstration
Conclusion
That’s component creation in a nutshell. We’ve seen how easy it
is to create new components based on the TComponent provided
for us by Delphi. We’ve also seen how easy it is to add a property
to a custom component, and to implement access methods to get
to the property’s value.

And, by the way, nice foreshadowing Critias. ∆

The demonstration files referenced in this article are available on the
1995 Delphi Informant Works CD located in
INFORM\95\APRIL\GE9504.

program at run-time.
PREMIERE ISSUE Delphi INFORMANT ▲ 20

end.

Figure 10: The complete program code for CustDemo.PAS.
Gary Entsminger is the author of The Tao of Objects, an Introduction to Object-orient-
ed Programming, 2nd ed. (M&T 1995) and Secrets of the Visual Basic Masters, 2nd
ed. (Sams, 1994). He is currently working on an advanced Delphi book for Prentice
Hall and is the technical editor for Delphi Informant.

PREMIERE ISSUE

Data-Aware Delphi
Modifying a Query Component
via a Tabbed Interface at Runtime

DataSource1
Delphi / Object Pascal | Beginner / Intermediate

By Dan Ehrmann
O ne of the delights of programming in Borland’s Delphi is the small
amount of code you have to write to implement powerful data-based
applications. For many common tasks, you just place components

from the Visual Component Library (VCL) on a form, modify a few properties,
link the data-bound components to an underlying data source, and compile. If
any code is necessary, it’s usually short and relatively simple.

For example, consider the program shown in Figure 1. This application displays the Customer
table that ships with Delphi (in the \Delphi\Demos\Data directory by default). Using the provided
DBGrid and DBNavigator components, you can freely scroll through the table
horizontally and vertically.
Figure 1: This simple application provides a view of a Customer table.
In addition to these standard
navigational controls, the sample
application provides a tabbed
interface. If you click one of the
lettered tabs along the bottom of
the window, you can filter the
view of the Customer table to
only those customers beginning
with that letter. If you click on
the Filter Field combo box, you
can select one of four fields
within the table to use as the fil-
ter criterion field.
The user can filter on the Customer ID, Company, City, and State fields
You can create this application
using Delphi’s Database Form Expert. It will place components on the form for you and link them
automatically. For this article, however, you’ll place and configure the components yourself so you
don’t have to change the design and properties the Expert creates.

Along the way, you’ll learn about a number of sophisticated components included in Delphi’s compo-
nent library, how to modify their properties, and how to attach the same code to more than one event.

using the first letter of the field.
Placing the Database Components
As with most Delphi applications that reference data in tables, you begin by placing data compo-
nents on a form to manage this data. Delphi reads data from a table using either a Query or a
Delphi INFORMANT ▲ 21

DataSource1
Table component. The Table component provides a static chan-
nel to data and allows you to open a table, but limits your ability
to filter or control what is accessed from that table. The Query
component allows you to open a table using a SQL query, either
as a static or a live view of the data.

For this example, you should place a Query component any-
where on the form; it will be invisible at runtime. Figure 2 lists
the important properties you should set for this component.
(That is, confirm the default settings for the Active, RequestLive,
and UniDirectional properties, assign the DatabaseName property
to the DBDATA alias, and enter the proper SQL statement for
the SQL property.)
Property Value

Active False (the default)

DatabaseName DBDATA, a predefined alias that
points to the \Delphi\Demos\Data
directory.

RequestLive False (the default)

SQL The SQL statement shown in
Figure 3.

UniDirectional False (the default)

Figure 2: Set these properties for the Query component.
The SQL SELECT statement shown in Figure 3 generates a
result set containing all records in the table. However, one of
Delphi’s powerful features is its ability to modify this expression
under program control to generate different results. As you’ll see
below, whenever the user selects a different tab, a dynamic
WHERE clause is added to the query.

You should also place a DataSource component on the form,
and link it to the Query component using the DataSet proper-
ty. Delphi’s DataSource component serves as a “traffic cop”,
managing the requests and activity between data-bound com-
PREMIERE ISSUE

Figure 3: Using the String list editor to define the SQL property of the
Query component.
ponents such as DBGrid and DBNavigator, and data compo-
nents such as Query.

Finally, select a DBGrid component from the Data Controls
page of the Component Palette and place it on the Panel as
shown in Figure 1. Using the DataSource property, attach this
component to the DataSource component you just placed on
the form. You can also set any other properties you need. For
example, you might want to disable the editing capability by
setting the ReadOnly property to False. You can also disable the
user’s ability to resize columns by expanding the Options proper-
ty (i.e. double-click Options), and setting the dgColumnResize
property to False.

At this point, you can return to the Query component and
change its Active property to True. This has the effect of running
the query and creating a view. The DataSource then picks up
this data set and passes it to the DBGrid which in turn displays
the result; all records from the Customer table are displayed.
Components on the Top Panel
Begin by placing a Panel component on the form. (It’s located at
the end of the Standard page.) Panel components are used simply
as containers for grouping user-interface elements. For example,
you can place components in a Panel, then move the entire Panel
around the form without disturbing the relationship of the com-
ponents within the Panel.

On the Panel’s far right side, place a standard Button component
and change its Caption property to indicate the function it will
perform — in this instance, Close. When you double-click the
button, Delphi displays the OnClick procedure, the one you are
most likely to modify. The Object Pascal code to place in this
procedure is as simple as it gets. The single method call:

Close;

tells the program to close the window.

Next, place a DBNavigator component from the Data Controls
page of the Component Palette. You should also connect this
component to the DataSource so the navigator buttons can be
used to move through the query’s result set.

Then, expand the VisibleButtons property by double-clicking
on it. Set all these properties to False except for nbFirst,
nbPrior, nbNext, and nbLast. No code is required! By attaching
the DBNavigator component to a DataSource, you automati-
cally enable each navigational button to perform its appropri-
ate function.

Place a ComboBox component (also on the Standard page of the
Component Palette) to the left of the DBNavigator buttons.
Notice how the entry field and drop-down arrow are separated
by a narrow gray area. This is the Windows convention indicat-
ing that you can select from the list or type a value into the entry
field. Now, change the Style property to csDropDownList. Notice
Delphi INFORMANT ▲ 22

DataSource1
how the entry field is now attached to the drop-down arrow.
This is also a Windows convention that indicates you must select
an item from the list.

Select the Items property and click on the ellipsis button (or
simply double-click the Items property) to display the String list
editor dialog box. Then type in the four entries as shown in
Figure 4. These are the names of the four fields from the
Customer table that will appear when the user clicks the combo
box to filter records.
Figure 4: Using the String list editor to specify the entries for the Filter
Field’s drop-down list.
You can also add a Label component to the left of the combo
box. Modify its Caption property to indicate the field’s purpose,
Filter Field in this example. We’ll associate Object Pascal
code with the ComboBox below.
The Tab Component
It seems that every Windows application contains a Tab compo-
nent as part of its interface. Some of them display pages within a
dialog box, such as the dialog box that is displayed when you
select Options | Environment from Delphi’s menu. Others are
used as selectors, to modify the information displayed in one or
more components of the window.

Delphi provides both types of components. The TabSet and
TabbedNotebook components are located on the Additional page
of the Component Palette. For this example, select the TabSet
component and place it along the bottom edge of the form. To
properly align TabSet, set its Align property to alBottom.

Select the Tabs property and click on the ellipsis to display the
String list editor. The first entry should be All. Then enter each
letter of the alphabet on successive lines, until you have 27
entries. Click OK and the TabSet component is defined.
Adding Event-Handling Code
For ComboBox components, the OnChange event is triggered
when the user makes an entry in the combo box entry field or
PREMIERE ISSUE
selects an item from the drop-down list. Therefore, this is the
appropriate event for redefining the SQL expression.

However, the same event isn’t appropriate for TabSet compo-
nents. OnChange is triggered before the tab changes. In effect, it
asks permission to make the change and allows you to deny the
event. A more appropriate event for TabSet components is
OnClick. This is triggered when the user clicks on a tab.

Since both of these events have the same procedure template, it’s
a good idea to centralize the query update in a single procedure
that is called for both events. To add this template, select the
TabSet component and display the Events page of the Object
Inspector. In the OnClick event, type DefineAndRunQuery) and
press wJ. Delphi will add a procedure template for this event to
the .PAS file.

Now select the ComboBox and display its Events page. In the
OnChange event, click on the drop-down arrow and select
DefineAndRunQuery from the drop-down list. Now the
“change” events for each component are connected to the
same procedure.
Reviewing the Source Code
The complete ViewCust.PAS file is shown in Listing One on
page 24. Here’s how it works.

QueryDef is a defined string constant, containing the basic SQL
query without a WHERE clause. You can copy and paste the
shell of this query from the SQL property of the Query compo-
nent. When the user changes the filter field or selects a new tab,
a new WHERE clause is calculated and concatenated with the
constant. This string is then assigned to the SQL property of the
Query component and the query is rerun, displaying a new set
of records.

Code must also be added to the OnCreate method for the form,
to ensure the ComboBox and TabSet are correctly initialized, and
to run the query the first time.

QueryWhereField is a global variable that tracks the field used
in the WHERE clause. It’s first initialized to the value
Company. When the user selects a new entry, the value of this
variable is changed at the beginning of the DefineAndRunQuery
procedure.

QueryWhereClause is a complete SQL WHERE clause built up in
the correct format. If the current TabSet is zero — equivalent to
selecting “All” — this string is set to null, so all records are dis-
played. However, if another tab is highlighted, this string is
assigned to the highlighted letter using the expression:

TabSet1.Tabs[TabSet1.TabIndex];

TabIndex returns the number of the highlighted tab, starting at
zero. Tabs is a String List property, enabling you to index to the
current tab using the same number. For example, when the user
Delphi INFORMANT ▲ 23

DataSource1
selects the City field and clicks on the “C” tab, the following
WHERE condition is constructed:

WHERE Customer.City LIKE “C%”

This SQL expression establishes a selection criterion on the City
field to find all cities where the first letter is “C”.

To redefine the query, it must first be closed and the SQL prop-
erty cleared. If this isn’t done, subsequent operations on the SQL
property will be added to existing code, resulting in a meaning-
less expression. The Add method of the SQL property allows you
to create a new SQL expression. In the example, this is a con-
PREMIERE ISSUE
catenation of the basic query — previously defined as a constant
— and the updated WHERE clause.

(Delphi provides another feature called parameterized queries for
creating queries that are variable. However, parameters can only
be used for selection criteria, not for changing the field being
queried. Since this example allows the user to filter on different
fields, parameterized queries cannot be used.)

Once the SQL property has been redefined, the query is opened
again. It runs and allows the DataSource component to read a
new result set and pass the set to the DBGrid.
Begin Listing One: Viewcust.PAS
unit Viewcust;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, StdCtrls, Forms, DBCtrls, DB,
DBGrids, DBTables,Tabs, Grids, ExtCtrls;

type
TForm1 = class(TForm)

DBGrid1: TDBGrid;
Panel1: TPanel;
CustDS: TDataSource;
CustQuery: TQuery;
DBNavigator: TDBNavigator;
TabSet1: TTabSet;
CustQueryCustNo: TFloatField;
CustQueryCompany: TStringField;
CustQueryCity: TStringField;
CustQueryState: TStringField;
CustQueryZip: TStringField;
CustQueryCountry: TStringField;
CustQueryPhone: TStringField;
Button1: TButton;
ComboBox1: TComboBox;
Label1: TLabel;
procedure FormCreate(Sender: TObject);
procedure DefineAndRunQuery(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{ private declarations }

public
{ public declarations }

end;

const

{ Base query, without the WHERE clause }
QueryDef = 'Select ' +

'customer."CustNo", ' +
'customer."Company", ' +
'customer."City", ' +
'customer."State", ' +
'customer."Zip", ' +
'customer."Country", ' +
'customer."Phone" ' +

'From "customer.db" ' +
'As customer ' ;

var
Form1: TForm1;

QueryWhereClause, {Where clause to be built}
QueryWhereField: String; {Field for selection criteria}
implementation

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin

{Initialize field and tabs}
ComboBox1.ItemIndex := 0;
QueryWhereField := 'Company';
TabSet1.TabIndex := 0;
QueryWhereClause := '';

{Run query the first time with these settings}
DefineAndRunQuery(Sender);

end;

procedure TForm1.DefineAndRunQuery(Sender: TObject);
begin

{Set field name based on value in combo box}
case ComboBox1.ItemIndex of

0: QueryWhereField := 'Company';
1: QueryWhereField := 'City';
2: QueryWhereField := 'State';
3: QueryWhereField := 'Country';

end;

{If TabIndex = 0 then "All" option is active}
if TabSet1.TabIndex = 0 then

QueryWhereClause := ''
else begin

{Build WHERE clause based on field and tab index}
QueryWhereClause := 'Where customer."' +

QueryWhereField +
'" LIKE "' +
TabSet1.Tabs[TabSet1.TabIndex] +
'%"';

end;

{Redline and run the query}
CustQuery.Close;
CustQuery.SQL.Clear;
CustQuery.SQL.Add(QueryDef + QueryWhereClause);
CustQuery.Open;

end;

procedure TForm1.Button1Click(Sender: TObject);
begin

Close;
end;

end.

End Listing One
Delphi INFORMANT ▲ 24

DataSource1
Compiling and Running the Form
After you have built the .PAS file to match the one shown in the
listing, compile it. If there are no errors, the form will appear on-
screen and you can navigate the Customer table (see Figure 5).
Try it out by clicking on one of the tabs to filter on the
Company field. Then click on the Filter Field combo box to
select another field to use as a filter. Finally, click on the Close
button to exit.
Figure 5: The sample application in action. Here, the filter feature is
used to show only those records with cities beginning with the letter “K”.
Conclusion
This simple example demonstrates how the various Delphi com-
ponents can work together to create powerful data-based appli-
cations. Delphi provides a rich collection of components to
place on your forms, and it’s a simple matter to change the
properties of these components. Data access is managed through
components that are invisible at runtime, but have properties
you can modify at design time and at runtime. Delphi also
allows more than one event to share the same event handler,
making it easy for you to centralize behavior resulting from dif-
ferent user actions.

What is amazing about this small example is how little code had
to be written. Two short methods encompass most of the func-
tionality in this application. This clearly demonstrates the ele-
gance of the Delphi environment.∆

The demonstration project referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\APRIL\DE9504.
PREMIERE ISSUE Delphi INFORMANT ▲ 25

Dan Ehrmann is the founder and President of Kallista, Inc. a desktop database consult-
ing firm based in Chicago. Dan is well known for his active involvement in the Paradox
world, writing books and articles, supporting Paradox on CompuServe, and speaking at
conferences and users group meetings. Kallista is already working on Delphi-based
applications for a number of clients.

PREMIERE ISSUE

A PC Sound Garden
Writing a Custom CD Player in Delphi

Sights & Sounds
Delphi / Object Pascal / Windows API | Intermediate / Advanced

By Kenn Nesbitt
Y ou have a CD-ROM drive in your computer, but it goes to waste 90
percent of the time. Why not use it to play music CDs when it’s not
otherwise occupied?

Of course, there are plenty of programs available on CompuServe or the Internet to coax audio out
of your CD-ROM drive. But why use one of those, when you can have fun writing a CD player
application in Delphi?
The TMediaPlayer Component
Delphi has a component named TMediaPlayer that allows you to control multimedia devices such as
VCRs, videodisc players, scanners, DAT recorders, CD-ROM drives, and more. In addition, the
TMediaPlayer component can play WAV audio files, MIDI files, and even AVI video.

Delphi makes all of these unbelievably simple to implement. The truth is, you can write controllers
for most of these devices with little or no code. However, the simplest device to implement is the
CD audio player. This is because the CD audio player does not require a filename — it simply plays
whatever CD is in the player. The CD audio player is probably the most useful device as well. This
is because while you may not have lots of MIDI or AVI files laying around, chances are, you have
some CDs you’d like to listen to while you work.
The Minimal CD Player Project
To create a working CD player, here’s all
you have to do:
• Create a new project.
• Select the TMediaPlayer component

from the System page of the Comp-
onent Palette and drop it on the form.

• In the Object Inspector, set the
DeviceType property to dtCDAudio.

• Change the VisibleButtons property to
remove the Step, Record, and Back
buttons (i.e. set btStep, btRecord, and
btBack to False).

That’s it! Your program should look similar to
the one in Figure 1. Now pop a CD in the
player, run your new project, and press the
Play button. If you don’t hear anything, try
plugging your speakers into the audio-out
port on the front of your CD-ROM drive
(instead of your sound card). If you hear it
Delphi INFORMANT ▲ 26

PREMIERE ISSUE

Sights & Sounds

Figure 1: A minimal CD player
at runtime.
now, you may need an extra
cable to connect the audio-
out connector on the back of
your CD-ROM drive to the
audio-in connector on your
sound card.
Now save your project. In this example, the main unit is saved as
CD.PAS and the project is saved as CDPLAYER.DPR. [The code
for CD.PAS is in Listing Two on page 28; the code for CDPLAY-
ER.DPR is in Listing Three on page 30. The CD player program
also features an About box. The ABOUT.PAS file is in Listing
Four on page 30.] Also, since MediaPlayer1 is a long name to type
repeatedly in code, you’ll probably want to change the name of the
TMediaPlayer component to something brief, like “CD”.

Adding features to your CD player project will involve adding
some Object Pascal code. You’ll also need to understand the
properties of the TMediaPlayer component and some of the mul-
timedia macros available in the Windows API. You will find doc-
umentation for Windows multimedia macros in the file
MMSYSTEM.HLP (by default this file is in the \DELPHI\BIN
directory). Don’t worry — it’s not very difficult and this article
will demonstrate everything you need to know.
Figure 2: The example CD player
at runtime. The program displays
the current track and time, the
state of the CD-ROM drive, and
offers special features on the
Options menu.
Tracking the CD
Probably the first feature you want to add is a display to show
what track is playing and how many minutes and seconds have
elapsed. All this information is available in the Position property,
but it must be decoded. The Position property is a Longint that
contains one piece of information in each of its four bytes. For
dtCDAudio devices, it stores the information in a format called
TMSF (for tracks, minutes, seconds, and frames). So you don’t
have to break out each byte manually, the MMSystem unit pro-
vides a number of macros that do the work for you. To get the
track, minutes, and seconds, these are: mci_TMSF_Track,
mci_TMSF_Minute, and mci_TMSF_Second, respectively.

The easiest way to track the current position of the CD is by
adding a TTimer component to your form, setting its Interval
property to one second or less, and adding some Object Pascal
code, as shown in Listing Two on page 28.

The first thing you’ll notice is the InitCD method loading the
length of each track into a global array. This happens because
there’s a lot of overhead involved in reading properties from a
TMediaPlayer component. When you read a property such as
TrackLength or Pos, Delphi calls a method of the component that
calls a Windows API call, that in turn calls the device driver for
the CD-ROM drive. This is not something you want to do more
often than absolutely necessary. Therefore, the sample project
reads the length of each track only once when the CD is loaded.

Note that the Timer event has code that looks at the CD player
once per second. If the player is stopped, it initializes the CD if
necessary. If the player is open, it resets a global variable to indi-
cate the CD’s tracks need to be loaded. If the player is playing, it
reads and decodes the Position property, and updates the Caption
properties of two labels to display the current track and time.

Also, the Timer event code only reads the Position property once,
storing it in the variable Pos, instead of once for the track, once
for minutes, and once for seconds. Just as with the TrackLength
property, we want to call the Position property as few times as
possible. Rather than repeat all this overhead three times, we can
simply save the property on the first read.

In addition, you’ll see some code in the OnPostClick event of the
CD component. When a user clicks a button to complete a
process, OnPostClick is triggered. For example, if the user clicks the
next button, any code in OnPostClick runs when the CD-ROM
drive positions itself to the next track. If the user clicks the play
button, OnPostClick runs right after the CD begins playing and so
on. The code in this procedure turns Timer1 on and off, depend-
ing on which button the user clicks. There is no need to have the
timer waste processor cycles when the CD is not playing.
Adding More Features
Next, you will probably
need a menu to implement
your new features, so drop a
TMenu component on your
form and add menu items
for whatever features you
want your CD player to
have. The sample project
implements continuous play
mode, that causes the CD
to start again when it has
finished, and repeat mode,
which repeats the current
track. Figure 2 shows the
CD Player project at runtime.
You may want to add random mode to play tracks in random
sequence, a database to store the names of the CD, artist, tracks,
etc., or set the ApplicationTitle property or CDForm’s Caption
property to indicate the CD or track name.

For features that are turned on or off, you can toggle the Checked
property of a menu item, and then add a little more code to the
Timer event.

To implement continuous play mode, all you need to do is check
the status of mnuOptionsContinuous. Check it in the Timer event
when the MediaPlayer’s Mode property is mpStopped.

Adding repeat mode involves storing the end of the current track
(as an absolute position, in seconds, from the beginning of the
CD), and then checking in the Timer event to see if you have
passed this point on the CD. The CDPos function shows how to
calculate the end of the current track. Notice that the
TrackLength property (and the TrackLen array in this project)
returns the length in MSF format, not in TMSF format. To
Delphi INFORMANT ▲ 27

Sights & Sounds
decode the track length, you will need to use the MCI macros
mci_MSF_minute and mci_MSF_second (as opposed to the
TMSF macros).
Kenn Nesbitt is an independent Windows and database consultant, formerly with Microsoft
Consulting Services. He is a Contributing Writer to Data Based Advisor, the Visual Basic
columnist for Access/VB Advisor magazine, a regular contributor to the German magazine
Office and Database, and co-author of Power Shortcuts: Paradox for Windows. You can e-
mail Kenn at kennn@netcom.com, or CompuServe 76100,57.
Happy Listening
Of course, this is just a single use for the TMediaPlayer compo-
nent. This component can also be used for playing audio and
video files, controlling other peripherals, and so on. And the
concepts you learn by implementing a CD player project will
also help you write other types of multimedia applications. Try
adding some custom features, or take what you’ve learned here
and start creating your own multimedia programs. ∆
PREMIERE ISSUE
The demonstration CD player project referenced in this article is
available on the 1995 Delphi Informant Works CD located in
INFORM\95\APRIL\KN9504.
Begin Listing Two — CD.PAS
unit Cd;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, MPlayer, Menus,
StdCtrls, MMSystem, ExtCtrls;

type
TCDForm = class(TForm)

CD: TMediaPlayer;
MainMenu1: TMainMenu;
mnuFile: TMenuItem;
mnuFileExit: TMenuItem;
mnuHelp: TMenuItem;
mnuHelpAbout: TMenuItem;
Options1: TMenuItem;
mnuOptionsContinuous: TMenuItem;
mnuOptionsRepeat: TMenuItem;
Timer1: TTimer;
Panel1: TPanel;
lblTrackLabel: TLabel;
lblPositionLabel: TLabel;
lblTime: TLabel;
lblTrack: TLabel;
Bevel1: TBevel;
pnlStatus: TPanel;
procedure mnuFileExitClick(Sender: TObject);
procedure mnuHelpAboutClick(Sender: TObject);
procedure mnuOptionsContinuousClick(Sender: TObject);
procedure mnuOptionsRepeatClick(Sender: TObject);
procedure Timer1Timer(Sender: TObject);
procedure CDPostClick(Sender: TObject;

Button: TMPBtnType);
procedure CDNotify(Sender: TObject);
function CDPos(Sender: TObject; Track,

Min, Sec: byte): Longint;
procedure InitCD(Sender: TObject);
procedure ResetCD(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
{ Private declarations }
CurrentTrack: byte;
EndCurrentTrack: Longint;
CDTracksLoaded: boolean;
CDPlaying: boolean;
CDPaused: boolean;
TrackLen: array[1..100] of longint;

public
{ Public declarations }

end;

var
CDForm: TCDForm;

implementation
uses About;

const
ModeStr: array[TMPModes] of string[10] =

('Not ready', 'Stopped', 'Playing', 'Recording',
'Seeking', 'Paused', 'Open');

{ $R *.DFM }

function TCDForm.CDPos(Sender: TObject;
Track, Min, Sec: byte): Longint;

var
i: integer;

begin
{ Total up the number of minutes and

seconds from the beginning of the CD
specified position }

Result := 0;

for i := 1 to Track - 1 do
begin

Inc(Result, mci_MSF_Second(TrackLen[i]));
Inc(Result, mci_MSF_Minute(TrackLen[i]) * 60);

end;

Inc(Result, Sec);
Inc(Result, Min * 60);

end;

procedure TCDForm.InitCD(Sender: TObject);
var

i: integer;
begin

{ Store track information in an array
so that we don't have to retrieve it
from the device driver more than once }

if not CDTracksLoaded then
begin

pnlStatus.Caption := ' Loading tracks';
pnlStatus.Update;
for i := 1 to CD.Tracks do
begin;

TrackLen[i] := CD.TrackLength[i];
end;
CDTracksLoaded := True;

end;
end;

procedure TCDForm.ResetCD(Sender: TObject);
begin

{ Reset everything to 0 }
CurrentTrack := 1;
lblTrack.Caption := '0';
lblTime.Caption := '00:00';

{ Change display color to red }
lblTrack.Font.Color := clRed;
lblTime.Font.Color := clRed;
Delphi INFORMANT ▲ 28

Sights & Sounds
lblTrackLabel.Font.Color := clRed;
lblPositionLabel.Font.Color := clRed;

{ Stop the CD player }
CD.Stop;

{ Set the start position to the
beginning of the first track }

CD.StartPos := mci_Make_TMSF(1,0,0,0);

CDPlaying := False;
CDPaused := False;

end;

procedure TCDForm.mnuFileExitClick(Sender: TObject);
begin

Close;
end;

procedure TCDForm.mnuHelpAboutClick(Sender: TObject);
begin

AboutBox.ShowModal
end;

procedure TCDForm.mnuOptionsContinuousClick(Sender:
TObject);
begin

mnuOptionsContinuous.Checked :=
not mnuOptionsContinuous.Checked;

end;

procedure TCDForm.mnuOptionsRepeatClick(Sender: TObject);
var

Track, EndMin, EndSec, EndFrame: byte;
begin

mnuOptionsRepeat.Checked :=
not mnuOptionsRepeat.Checked;

if mnuOptionsRepeat.Checked then
{ Find 2 seconds before end of track }
With CD do
begin

Track := mci_TMSF_Track(Position);
EndMin := mci_MSF_Minute(TrackLen[Track]);
EndSec := mci_MSF_Second(TrackLen[Track]) - 2;
EndCurrentTrack := CDPos(CD,Track,EndMin,EndSec);

end;
end;

procedure TCDForm.Timer1Timer(Sender: TObject);
var

Track, Minutes, Seconds: byte;
strMinutes, strSeconds: string;
Pos: Longint;

begin
if CDPaused then

pnlStatus.Caption := ' Paused'
else

pnlStatus.Caption := ' ' + ModeStr[CD.Mode];

case CD.Mode of
mpStopped:

begin
{ Initialize the CD as soon as it is loaded }
if not CDTracksLoaded then InitCD(CD);

{ In case CD ends when continuous play is
enabled }

if CDPlaying and
(not CDPaused) and
mnuOptionsContinuous.Checked then

begin
CD.StartPos := mci_Make_TMSF(1,0,0,0);
CD.Play;
CD.EnabledButtons :=

[btPause,btStop,btNext,btPrev,btEject];
PREMIERE ISSUE
end;
end;

mpOpen:
{ In case user manually ejects CD }
begin

CDTracksLoaded := False;
ResetCD(CD);

end;

{ mpPaused, mpOpen, mpSeeking: }
{ Do nothing }

mpPlaying:
begin

{ Get the current track, minutes and seconds }
{ Add the MMSystem unit to the Uses

clause to make these functions available }
Pos := CD.Position;
Track := mci_TMSF_Track(Pos);
Minutes := mci_TMSF_Minute(Pos);
Seconds := mci_TMSF_Second(Pos);

{ Code for Repeat }
if mnuOptionsRepeat.Checked then
begin

if CDPos(CD,Track,Minutes,Seconds) >
EndCurrentTrack then

begin
Timer1.Enabled := False;
CD.Notify := True;
CD.Previous;

end;
end

else
CurrentTrack := Track;

{ Build a minutes and seconds display string }
strMinutes := IntToStr(Minutes);
strSeconds := IntToStr(Seconds);
if length(strMinutes) < 2 then

strMinutes := '0' + strMinutes;
if length(strSeconds) < 2 then

strSeconds := '0' + strSeconds;
{ Display the current track, minutes,

and seconds }
lblTrack.Caption := IntToStr(Track);
lblTime.Caption := strMinutes+':'+strSeconds;

end;
end;

end;

procedure TCDForm.CDPostClick(Sender: TObject;
Button: TMPBtnType);

begin
case Button of

btPlay:
begin

{ Change display color to lime }
lblTrack.Font.Color := clLime;
lblTime.Font.Color := clLime;
lblTrackLabel.Font.Color := clLime;
lblPositionLabel.Font.Color := clLime;

CDPlaying := True;
CDPaused := False;
Update;

end;
btPause:

begin
{ Change display color to yellow }
lblTrack.Font.Color := clYellow;
lblTime.Font.Color := clYellow;
lblTrackLabel.Font.Color := clYellow;
lblPositionLabel.Font.Color := clYellow;
Delphi INFORMANT ▲ 29

Sights & Sounds
CDPlaying := False;
CDPaused := True;

end;
btStop:

ResetCD(CD);
btEject:

begin
CDTracksLoaded := False;
ResetCD(CD);

end;
end;
Timer1Timer(Timer1);

end;

procedure TCDForm.CDNotify(Sender: TObject);
begin

Timer1Timer(Timer1);
end;

procedure TCDForm.FormCreate(Sender: TObject);
begin

CDPlaying := False;
CDPaused := False;
CDTracksLoaded := False;
Application.Title := 'CD Player';

end;

end.
End Listing Two
Begin Listing Three — CDPLAYER.DPR
program Cdplayer;

uses
Forms,
Cd in 'CD.PAS' { CDForm },
About in 'ABOUT.PAS' { AboutBox };

{ $R *.RES }
begin

Application.CreateForm(TCDForm, CDForm);
Application.CreateForm(TAboutBox, AboutBox);
Application.Run;

end.
End Listing Three
Begin Listing Four — ABOUT.PAS
unit About;

interface

uses WinTypes, WinProcs, Classes, Graphics, Forms,
Controls, StdCtrls, Buttons, ExtCtrls;

type
TAboutBox = class(TForm)

Panel1: TPanel;
OKButton: TBitBtn;
ProgramIcon: TImage;
ProductName: TLabel;
Version: TLabel;
Copyright: TLabel;
Comments: TLabel;

private
{ Private declarations }

public
{ Public declarations }

end;

var
AboutBox: TAboutBox;

implementation

{ $R *.DFM }
end.
End Listing Four
PREMIERE ISSUE Delphi INFORMANT ▲ 30

PREMIERE ISSUE

From ODBC to the BDE
Setting Up a Delphi Client/Server Development Environment

Delphi C/S
Delphi / ODBC / BDE / Gupta SQLBase | All Levels

By Sundar Rajan
D elphi is a highly versatile rapid application development tool that caters
to a potentially huge audience. With Delphi, you can revert to low-level
assembly language and write device-drivers and the like, or develop

sophisticated client/server database applications without writing a single line of
code. Delphi is also a next-generation application development environment
that combines the well-known Pascal language with the familiar Windows user
interface and access to the entire Windows programming environment. This set
of abilities is unmatched by any other Windows development tool.

Client/server is one of today’s buzzwords. The client/server model is quickly becoming the de facto
standard for developing new database applications in most corporate MIS departments. From e-
mail systems such as Lotus Notes to component models like OLE, client/server is making its mark
on all facets of the software world. If you depend upon developing any kind of software for a liv-
ing, you can scarcely afford to ignore it.

Why is client/server so important? Before we discuss this in detail, let’s briefly review
client/server architecture.
Client/Server Architecture
Client/server architecture splits the workload between client computers that request services — such
as printing, information retrieval, or updating of a customer account — and server computers that
Layer Contents

Front-end Desktop GUI application

Back-end Relational SQL database

Figure 1: Client/server application architecture.
process the request. Client/server does not
rely exclusively on the expensive resources of
a centralized mainframe or try to do every-
thing on desktop PCs the way some LAN-
based multi-user programs do. Rather, it
takes advantage of the computing power of
desktop PCs by letting them share some of
the processing burden (see Figure 1).
Most modern client/server configurations use a two-tiered model, consisting of a client that
invokes services from a server. While the client application interacts with and presents information
to end-users using a graphical user-interface (GUI), the database server perform high-speed data
manipulation, protect data integrity, and enforce business rules.
Delphi INFORMANT ▲ 31

C
ou

rt
es

y
of

 T
he

 G
ar

tn
er

 G
ro

up

Delphi C/S
(Client/server is a logical concept. It doesn’t necessarily require the
client to have a GUI front-end, nor does the back-end have to be
a SQL database server. Client/server technology is merely a para-
digm or model, for the interaction between concurrently running
software processes that may or may not run on separate
machines. However, the popular model for client/server architec-
ture is the one described above.)

At first glance the term client/server seems to imply there are
only two components. Although not mandatory, as we shall see
later, there is usually a third component — the network (and
even a fourth if you count the human component). The network
component provides the plumbing, the pipeline through which
data moves.
Figure 3 (Top): A practical example of the client/server model.
Figure 4 (Bottom): The Remote Presentation client/server model.
The Progression to the Client/Server Model
The interest in the client/server model didn’t arise overnight. It
was a gradual progression from the mainframe era, primarily
motivated by an effort to make better use of desktop processing
power and easier access to information.

The Gartner Group developed a chart to describe the grada-
tions of client/server computing (see Figure 2), especially as
they relate to IBM’s terminology for different degrees of
client/server. At one end of the spectrum are mainframe appli-
cations, where all processing is done on the mainframe and the
terminal is simply a vehicle for data entry. As you move
towards client/server, display and significant data manipulation
are accomplished on local PCs. Client/server models harness
processing power at the workstations.

A practical example of the client/server model is shown in Figure 3.
It uses Sybase SQL Server architecture as its example. Distributed
logic occurs when the logic of the application is split across the net-
work. The design goal of distributed logic applications is to mini-
mize messages between components. The protocol “stack” in Figure
3 represent the OSI 7-layer model. This model is the basis for SQL
servers such as Sybase/Microsoft, Oracle 7, InterBase, etc.
PREMIERE ISSUE

Figure 2: Degrees of client/server computing. The amount of processing acc
workstation increases as you move from left to right.
Oracle 6.3 supports the Remote Presentation model shown in
Figure 4. There are no commercially available databases that sup-
port the distributed processing model yet.
Downsizing: Advantages of Client/Server Architecture
In mainframe environments, the terminal on the desktop pro-
vides the presentation services, and the host provides the
remaining functions. The host determines every response to the
user’s queries, completes the business logic, and retrieves data

from the database.
omplished at the
A mainframe environment has its disad-
vantages. First the user-interface is termi-
nal-based, so you cannot create GUI
interfaces when all the processing is on a
central host. Second, each additional user
increases the load on the system. Even
the network load is higher than necessary.

Downsizing to client/server architecture
offers several key advantages over the typ-
ical IBM mainframe environment:
• Programming effort can be more effi-

cient, through the use of better tools
and languages.

• Hardware/system software cost per
transaction can be dramatically
reduced up to 80 percent.
Delphi INFORMANT ▲ 32

Delphi C/S
• Average response time is usually less than one second, com-
pared to a typical mainframe response time of three to five
seconds. Response time improvement is even more dramatic
when the user is on a dial-up line, or in a location where
wide-area network links are slow.

• Client/server systems are scaleable. They can begin as a
small departmental system, and grow to support the
entire company — without a significant change in the
programming.
Why Upsize to Client/Server from File Servers?
For PC-based programmers, the best way to understand client/serv-
er architecture is to contrast it against the file server architecture
most of us are familiar with. Both architectures are designed to
allow users to store and access data in common databases.

In file server architecture, workstations on the network running a
database (e.g. Paradox) access common data on the network file
server. The file server — however large and fast — is treated as a
large, shared hard disk by each user’s copy of Paradox.

The desktop client handles all the presentation, business logic,
and database functions. The file server merely retrieves and
passes the necessary files to the desktop. With no network lag
between presentation logic and services, using the desktop to
handle all displays makes it easier to create a good GUI for
applications. Unlike mainframes (where each additional user is
an increased burden), each additional user on a file server
actually brings more processing power to the network.

However, there are two drawbacks to the file server model:
demands on the desktop are too high, and there is an increased
network load. Suppose you have an order entry database that
contains a customer, orders, parts, and items table. A perfectly
reasonable request would be to list customers, each part ordered
by the customers, and the total value of each part. In a file serv-
er situation, the contents of all four tables must cross the net-
Figure 5: Borland’s upsizing strategy is built on the Borland Database Engine (BDE).
work to the client, regardless of how
much data is involved, thus bogging
down the network.

Also, in a file server model, locking of
records and tables is left to program-spe-
cific methods instead of the database, and
data access is controlled by the code with-
in the application.

Some of the disadvantages with this envi-
ronment include:
• When querying and accessing data,

much of the data and all the indexes
travel across the network to the pro-
gram running on the workstation.

• Each workstation must have signifi-
cant computing power to execute
queries, perform presentations, and
manipulate data.
PREMIERE ISSUE
• Most file server databases have no data recovery capabilities
in case of a software or hardware problem.

• Each application must enforce referential integrity and busi-
ness rules (for example, not allowing users to delete an
account if there are open customers for that account).

• Since the data on the file server is usually stored in a propri-
etary format, other applications can only access the data by
exporting from the database (unless they support the same
proprietary format). This creates redundant data, and intro-
duces major concurrency and accuracy problems.

As we’ll see, the simple client/server model (client = PC, server =
database) addresses these and other limitations effectively by
splitting the responsibilities between the two. The client applica-
tion — typically a GUI application running on the user’s work-
station — takes care of the user interface (including display and
data presentation), user interactions with the application, local
validity checks, and communications with the server.

The database server — usually a multi-tasking program running
on a dedicated PC on the LAN, a mini-computer, or even a
mainframe — handles all database updates, data security and
recovery, query optimization and processing, transaction manage-
ment, referential integrity, enforcement of business rules, and
communication to the client.

By providing all access to the data using an open, non-propri-
etary SQL standard, client/server systems allow multiple applica-
tions to access the same database.
Borland’s Upsizing Strategy and BDE
From the above discussions, it’s clear there is a strong case for
upsizing. Borland rates upsizing to be an even more important
trend than downsizing, and contends that upsizing will occur
when PC databases become business-critical at the workgroup
level. Borland’s upsizing strategy for Delphi (and its other prod-
ucts including dBASE and Paradox) is based entirely upon the
Delphi INFORMANT ▲ 33

Figure 6: Setting the Database Name to Gupta in the ODBC SQLBase
Driver Setup dialog box.

Delphi C/S
powerful Borland Database Engine (see Figure 5). The BDE’s
goal is to provide full access to all types of data, regardless of
where they reside. This means that you’ll be able to create appli-
cations that not only use desktop data, but SQL data from
ODBC data sources and SQL servers.

Borland’s product developers have used IDAPI and BDE as com-
ponents in dBASE and Paradox for Windows. Paradox 5.0 for
Windows was the first product to show off the advantages of
Borland’s underlying database technology. Because all data access in
the new Borland desktop products occurs via BDE/IDAPI, switch-
ing from desktop databases to SQL servers should be transparent.

The BDE has an impressive list of features including bi-direction-
al cursors, linked cursors, bookmarks, navigational access to SQL
data sources, and support for either SQL or QBE queries against
all data sources. While the BDE handles dBASE, Paradox, and
ODBC data sources, SQL Link provides high-performance native
access to SQL servers. It also supports database aliases that pro-
vide a powerful metaphor for pointing to databases.

The key points to Borland’s upsizing strategy for Delphi are:

Scaleable Applications. By enabling developers to reference
tables by aliases created using the IDAPI utility, Delphi
makes it easier to develop an application using test data in
local tables and later deploy it using a SQL database server.
Theoretically, applications can be ported by merely changing
the aliases. However, although this is true for simple decision
support systems, most OLTP applications require consider-
able planning and design to be scaleable. Nevertheless, aliases
do ease the migration process.

Concurrent and Transparent Access to ODBC, SQL, dBASE, and
Paradox. Delphi is built on the BDE, which enables Delphi to con-
currently connect to and join dBASE IV, Paradox, and ODBC data
sources as well as Oracle, Sybase, and InterBase SQL servers. Borland
SQL Link 2.0 is required for connecting to InterBase, Informix,
Oracle, and Sybase/Microsoft SQL Server. It provides high-perfor-
mance, native access to data residing on these servers.

Delphi has key advantages for SQL database users, such as: bi-
directional navigation, data ordering by index, bookmark
reusability, and dynamic manipulation of SQL data via “live”
data source access. You can use ODBC to connect with every-
thing else (DB2, AS/400, Btrieve etc.). Users can access ODBC
by using the BDE and third-party ODBC drivers such as the
Intersolv ODBC Pack or those shipped with Microsoft’s Office,
Excel, Visual C++, etc.

SQL Passthrough. If you need to make database requests in SQL
instead of with PC-style navigational commands, Delphi’s TQuery
component is very useful. Using TQuery , SQL statements
(including stored procedures) can be executed directly. Data con-
trols, such as DBGrids, can be populated from the results. [For an
example of the TQuery component in use, see Dan Ehrmann’s arti-
cle “Data-Aware Delphi” beginning on page 21.]
PREMIERE ISSUE
Loading the ODBC Driver
Let’s look at some practical examples of this upsizing architec-
ture. First, create an ODBC data source for a popular PC-
based SQL database, Gupta’s SQLBase. Then create a Delphi
form to maintain data.

Using an ODBC data source in Delphi involves a four-step process:
• Have an ODBC driver for the data source you wish to con-

nect to. Note that the BDE (also known as IDAPI) provides
the means to connect to ODBC but does not supply the
ODBC drivers. ODBC drivers for a variety of databases can
be purchased from sources such as Intersolv or Microsoft.
Intersolv’s Data Direct Pack has more than 35 ODBC dri-
vers. However, if you have Excel, Word, Office, or Visual
C++ installed, you already have the drivers for Access,
Oracle, and Microsoft SQL Server.

• Create a data source by using the ODBC Administrator
(ODBCADM.EXE) from the Windows Control Panel. (If
ODBC is installed on your system, then ODBCADM.EXE
should be in the \Windows\System directory.)

• Create a new IDAPI driver for the ODBC data source using
the IDAPI Alias Manager.

• Create a database alias using the IDAPI Alias Manager.

This article’s example uses Gupta’s SQLBase and Intersolv’s
ODBC driver for that product. To begin, create the SQL Base
ODBC data source, and follow these steps:
• Launch the ODBC Administration Application from the

Windows Control Panel or by running
ODBCADMN.EXE.

• Click the Add button of the Data Sources dialog box to dis-
play the Add Data Source dialog box.

• Double-click Gupta SQLBase Driver in the Installed
Drivers list box to display the ODBC SQLBase Driver
Setup dialog box. Click the Options button to display the
additional choices available (see Figure 6).

• Enter Gupta SQLBase in the Data Source Name edit box
and a description such as Gupta SQLBase ODBC Driver in
Delphi INFORMANT ▲ 34

Delphi C/S
the Description edit box. When SQLBase is installed, it
installs a sample database named Gupta as well. Since we are
going to use tables from this database, set the Database
Name to Gupta and Default Logon ID to SYSADM. (As
shown in the Figure 6, all ODBC drivers are accompanied
by an on-line help file for additional information.)

• Click the OK button to close the dialog box, and click the
Close button of the Data Source dialog box to exit the
ODBC Administration application.

Now, we’ll create a new IDAPI driver. Launch the BDE
Configuration Utility and select the New Driver option from the
Drivers page to display the Add ODBC Driver dialog box (see
Figure 7). Enter the name of the SQL Link Driver, for example
SQLBase (the Utility automatically prefixes it with ODBC_).
Then select Gupta SQLBase Driver as the Default ODBC
Driver, and Gupta SQLBase as the Default Data Source Name.
Figure 7 (Top):
Using the BDE
Configuration Utility’s
Add ODBC Driver
dialog box.
Figure 8 (Left):
Defining a BDE alias
at the Add New Alias
dialog box.
Creating a BDE Alias
Before using the ODBC data source, you need to define an alias
for the data source. Select the Aliases page of the IDAPI
Configuration Utility, and click the New Alias button to display
the Add New Alias dialog box (see Figure 8).

Enter a name in the New alias name edit box (SQLBase for
example) and select the correct Alias type from its list box. That
is, specify the driver name of the ODBC data source entered ear-
lier in the ODBC Administrator, ODBC_SQLBase in this example.
Click OK to accept the changes to the dialog box.

Back at the Aliases page, highlight the SQLBase alias and enter
the appropriate path to the SQLBase sample database
(c:\sqlbase\gupta by default). Then save the changes to the
IDAPI configuration file (IDAPI.CFG by default) by selecting
File | Save from the menu. Finally, exit the BDE
Configuration Utility.

Once you have set up an alias, the ODBC database can be used
just as a local Paradox or dBASE database. It’s important to
note that although we’re using a Gupta SQLBase database in
this example, the steps indicated above apply equally to all
desktop or client/server databases (e.g. Paradox, dBASE, Access,
Oracle, Sybase, or IBM AS/400) provided you have access to
IDAPI/ODBC drivers and connectivity software for those
back-ends.
Creating a Delphi Client/Server Application
Delphi’s database features combine the best of both the desktop
and client/server worlds. It lets you navigate data (PC style)
using the TTable component. It also allows you interact with a
back-end database directly using pass-through SQL statements in
the TQuery component.

Even if you’re not a client/server guru, you can sample Delphi’s
RAD capabilities almost immediately. Let’s explore some of
Delphi’s unique features by creating a simple master/detail form
for our SQLBase database.
PREMIERE ISSUE
Start Delphi and close the default project (Project1.DPR) and
Pascal unit (Unit1.PAS) that Delphi automatically generates.
Choose No in the dialog box asking if you want to save changes to
Unit1.PAS. We’re now ready to use Delphi’s Database Form Expert.

To do this, select Help | Database Form Expert from the
Delphi menu. The first screen of the Expert will be displayed
(see Figure 9). For Form Options, select Create a master/detail
form. Note that the DataSet Options is set to TTable compo-
nents. Accept this default option and click on the Next button.

The second Expert screen prompts you to Choose a table to
use with the master query. Use the Drive or Alias name con-
trol to specify SQLBase as the database alias. The Expert will
display the Database Login dialog box for SQLBase (as shown
in Figure 10) for you to enter the appropriate password. Enter
the default password, SYSADM, and click on OK.

The Table Name list box will be filled with SQLBase tables.
Specify ORDER_MASTER as the master table (as shown in
Figure 11) and click on the Next button. At the next screen,
select all fields from the Available Fields list for the master table
(see Figure 12) and click on Next. Then choose Horizontal lay-
out on the next screen (not shown) and click on Next.

The next Expert screen prompts you for the detail table (see
Figure 13). Specify ORDER_DETAIL as the detail table and
click on Next. At the next screen (not shown), select all the
Delphi INFORMANT ▲ 35

Delphi C/S

Figure 9 (Top): The first screen of Delphi’s Database Form Expert.
Figure 10 (Bottom): Selecting the SQLBase alias.
Available Fields and click on Next. The subsequent screen (not
shown) prompts you for the layout option. Accept the default
(Grid) option by clicking on Next.

The next Expert screen asks you to specify the relationship
between the master and detail tables. The tables are joined by
the ORDER_NUM field, so select ORDER_NUM from both
list boxes and click the Add button to create the join (as shown
in Figure 14) and click the Next button.

The final Database Form Expert screen (not shown) asks if you
want to generate a main form for the new application. Do so by
clicking the Create button. The new form and its associated
unit file will be displayed (as shown in Figure 15).
Delphi’s Unique Features
It’s a “Two-Way Tool”. Note the way Delphi automatically gen-
erates all the Object Pascal code for the form. This two-way facili-
ty generates code automatically from form components and vice-
versa, and is the first of Delphi’s unique features.

Live Data at Design time. When you set the Active property to
True for the TTable component generated by the Database Form
Expert, you will immediately see the live data displayed for the
first master record and corresponding detail record (see Figure 15).
PREMIERE ISSUE
Using SQL servers to execute stored procedures (collections of
procedural code that typically include SQL for accessing the
database) with the TQuery component is an interesting way to
use this live data facility. To see this, create a form using the
Database Form Expert and specify the TQuery component as the
source and a Sybase/MS SQL Server as the alias. After the form
is generated, modify the TString property to exec sp_who.
When you press OK to return from the String list editor, you
will be prompted to enter the User Name and Password for the
SQL Server (as shown in Figure 16).

Next, even in design mode, you can see the results of the exe-
cuted stored procedure (see Figure 17). Furthermore, you can
replace sp_who with any other Sybase stored procedure and exe-
cute the results.

“Client/Server” on Your Desktop. There is a common miscon-
ception that client/server means elaborate network configura-
tions. Actually a client/server system doesn’t require the database
to physically reside on a different PC. Gupta’s SQLBase (like
Borland’s InterBase) is a true SQL database server that can still
run on your desktop. The little icon titled SQLBase Engine in
Figure 15 represents the SQLBase engine process running simul-
taneously on your PC.

True High-Performance EXEs. If you’ve used Visual Basic or
PowerBuilder to develop applications, you will immediately realize
the strengths of Delphi. Delphi’s native code compiler generates
true high-performance machine-code unlike the p-code generated
by PowerBuilder and VB. Once you have compiled the application
by selecting Compile | Build All or Run | Run from the menu,
the resulting EXE can be run as a stand-alone application.

Less Code Than Visual Basic. In VB, the same master-detail
functionality would have required several pages of code. Why? VB
provides very little support for database work since it’s primarily a
general-purpose Windows programming tool. VB’s native grid
and other controls are not data-aware. The programmer must
write unique routines to process data to and from the control
(such as a grid) to the database table, or resort to third-party con-
trols. In Delphi, the same functionality is achieved with no code.
Client/Server Tips
Needless to say, front-end tools can only go so far in the applica-
tion building process. Building successful client/server applica-
tions requires complex multi-disciplinary skills — knowledge of
the client operating system and front-end tools, a firm grounding
in client/server architecture, SQL literacy, middleware knowl-
edge, and back-end server skills.

To go with the new skills, there are a few general rules for creat-
ing client/server systems. The first is “Divide and rule”. One of
client/server architecture’s major benefits is its ability to provide a
more efficient division of labor between client applications and
database servers. Try to make use of this architecture — split your
application into presentation (UI) and business logic components,
and off-load business logic to the back-end server where possible.
Delphi INFORMANT ▲ 36

Figure 15: The result of the Database Form Expert. It has generated a
complete form and the underlying Object Pascal code. Note that the

Delphi C/S

Figure 11 (Top Left): Selecting ORDER_MASTER as the master table. Figure 12 (Top Right): Selecting all fields from the master table. Figure 13
(Bottom Left): Selecting ORDER_DETAIL as the detail table. Figure 14 (Bottom Right): Defining the link between the master and detail tables.
Since the database could be accessed from outside the application
you are building (e.g. a query tool such MS-Query may be
updating your tables), it makes sense to implement the business
rules using triggers on the back-end server. You can reduce the
load on both the client and network by moving the business
logic to the server, leaving just the presentation services and logic
on the client. The mechanism most commonly used for putting
business logic on the servers is stored procedures.

The second rule is “Minimize network traffic between the client
and server”. Follow the general rule for client/server front-ends —
deal with fewer records at a time. Any time a set of records has to
be retrieved from the server you will incur the transmission time
for the records to move from the server to the front-end. Large
numbers of records retrieved from the server increase network traf-
fic — watch out for this especially in QBEs. (If you are using
Sybase, you can make effective use of temporary tables [#tables] to
hold intermediate results on a pass-through SQL query or write
stored procedures. Stored procedures offer significant benefits over
regular SQL statements — improved performance and reduced
network traffic. In addition, they are both shared and cached.)

If accessing dBASE or Paradox files on your file server is akin to
making local phone calls, doing SQL queries against SQL servers is
a like making long-distance phone calls. As with any long-distance
phone call, you will have to plan your conversations to minimize
PREMIERE ISSUE
the amount of time (thereby the cost) you spend on the network.

The third rule is “Use stored procedures to fine tune performance”.
Because they are compiled, the judicial use of stored procedures can
improve performance and reduce server load (compared to direct
QBE's or uncompiled embedded SQL sent from the client).
Another aspect of performance is network load. Instead of sending
Delphi INFORMANT ▲ 37

SQLBase Engine is running.

Figure 16 (Top): The
Database Login

dialog box for
SQL Server.

Figure 17 (Bottom):
Executing a stored

procedure
in design mode.

Delphi C/S
SQL statements from the client to the database server and returning
intermediate results to the client, all the processing and decisions can
happen on the server with a simple call to the stored procedure.

For example, you could use a stored procedure to update a Part
table so that the average price of all the parts would increase by an
amount specified in the parameter @avg. Here’s an example of
what such a stored procedure might look like:

CREATE PROCEDURE price_increase @avg AS
WHILE (SELECT AVG(Price) FROM Part) <= @avg
UPDATE Part SET price = 1.1 * price

Stored procedures improve database and application integrity.
And because they are shared, they ensure the consistency of oper-
ations and calculations.
Conclusion
We’ve taken a quick tour of client/server and Delphi’s database capa-
bilities. Delphi provides an attractive framework for making the
transition to client/server. While the opportunities are immense, sev-
eral new skills have to be acquired especially in the areas of applica-
tion design, SQL server know-how, and the SQL language.

There are exciting times ahead for Delphi developers willing to
take on the client/server challenge. ∆
PREMIERE ISSUE Delphi INFORMANT ▲ 38

Sundar Rajan is a Consultant with On-Line Resources Inc., a Longwood, Florida based
consulting firm specializing in client/server development. He is currently developing a
number of client/server applications for a large Japanese semi-conductor manufacturer
in Northern California. Before moving to the US in 1993, Sundar founded and operat-
ed SunSoft Systems (NZ), a software consulting firm in Wellington, New Zealand. He
can be reached on CompuServe at 72774,1030.

PREMIERE ISSUE

A Programmer’s
Compass
Using Borland Database Aliases in Delphi

DBNavigator
Delphi / BDE Configuration Utility | All Levels

By Cary Jensen Ph.D.
D elphi database developers are discovering what Paradox for Windows
and dBASE for Windows users have known for a while: Aliases are hot.

An alias is a pointer to data. On a stand-alone machine or a local area network, an alias refers to a
subdirectory. When used in a client/server environment, an alias points to a remote database.

The advantage provided by an alias is quite simple. An alias permits you to refer to data without an
explicit reference to where the data is stored. For example, the DatabaseName property of a TTable
component can be set to an alias instead of a DOS path. (A particular table stored in the directory
specified by the alias is defined by the TableName property of the TTable component.)

If the location of the table specified in the TableName property is later changed, it’s necessary only
to change the directory referred to by the alias. This can easily be
done without having to re-compile. In fact, using an alias permits
changes to the directory even when the source code is unavailable.
The Types
There are two types of aliases. Usually when we think of aliases we
think of those specified in the IDAPI configuration file
(IDAPI.CFG by default). (IDAPI stands for Integrated Database
Application Programming Interface.) These aliases can be thought
of as global to whoever shares the .CFG file. That is, all applica-
tions that use a particular IDAPI configuration file share access to
all the aliases defined in that file. These aliases are called BDE
aliases. (BDE is an acronym for Borland Database Engine.)

The second type of alias is defined from within a project. These alias
definitions are available to that project only, and are called local aliases.

Let’s begin by taking a look at adding a BDE alias to IDAPI.CFG,
and then using that alias in a form. Later in this article, we’ll dis-
cuss how to create a local alias.
Creating BDE Aliases
The most common way to add an alias is through the BDE
Configuration Utility (BDECFG.EXE), shown in Figure 1.
Delphi INFORMANT ▲ 39

Figure 1 (Top): The BDE Configuration Utility. Figure 2 (Bottom): The
Aliases page of the BDE Configuration Utility.

Figure 4: The parameters for an alias based on the INTRBASE driver.

Figure 3: Use the Add
New Alias dialog box to
define the name and driver
of an alias to add to
IDAPI.CFG.

DBNavigator
(Paradox for Windows and dBASE for Windows users will recog-
nize this applet as the IDAPI Configuration Utility.) To access it,
double-click on the Database Engine Configuration icon in your
Delphi program group.

Next, click on the Alias tab to display the Aliases page, shown in
Figure 2. From here you can add, delete, and modify your BDE
alias definitions.

To add an alias, click the New Alias button. The BDE
Configuration Utility displays the Add New Alias dialog box, where
you can specify both a name and a driver type for the alias (see
Figure 3). Your alias name can be up to 31 characters in length and
can consist of letters, numbers, and the underscore character. Most
developers try to keep their alias names informative, yet short.

The driver type you select depends on the types of tables you want
to access using this new alias. If you want to use the alias to open
ASCII, dBASE, or Paradox tables, select the STANDARD driver. If
you are establishing your alias to attach to a database server, select
the driver corresponding to that server. To attach to an Oracle server
for example, select ORACLE from the Alias type drop-down list.
By default, Delphi includes the STANDARD and INTRBASE dri-
PREMIERE ISSUE
vers. Other drivers are available if you have also installed the Borland
SQL Link. [To see an example of creating an alias for a Gupta
SQLBase database, see Sundar Rajan’s article “From ODBC to the
BDE” beginning on page 31.]

After you specify the alias name and driver type, click the OK
button. The BDE Configuration Utility will return to the Aliases
page, and the new alias name will appear in the Alias Names list.

You’re still not finished, however. You must now define the parame-
ters of the alias. Which parameters an alias has depends on the dri-
ver type. For example, aliases created using the STANDARD driver
have two parameters — the path and the default driver. Aliases cre-
ated to refer to a database server will have several more parameters.
This can be seen in Figure 4, which shows the Parameters list for
an alias specified for use with the INTRBASE driver.

You can also use the Aliases page of the BDE Configuration Utility
to modify or delete existing aliases. How you modify an alias
depends on whether you need to change the driver type. If you
don’t need to change the driver type, highlight the alias name and
change its parameters displayed in the Parameters list. To delete an
alias, highlight the alias name and click the Delete Alias button.

Changing the driver type is more involved. You must first delete the
alias, and then use New Alias to add a new alias using the old alias
name. The most common reason for changing the driver type is
changing an application from running against local data to running
against data stored on a database server.
Delphi INFORMANT ▲ 40

DBNavigator
Once you have added, deleted, or modified your aliases, you need to
update IDAPI.CFG. From the BDE Configuration Utility menu
select File | Save to update the current version of IDAPI, or File |
Save As to create a new IDAPI.CFG. (Remember that when
Delphi loads, it knows which IDAPI.CFG to use based on the
[IDAPI] section of the WIN.INI file.)

(You can also create, modify, and delete BDE aliases using the
Database Desktop, which is also available in the Delphi group
window. Select File | Aliases from the Database Desktop menu
to display the Aliases Manager dialog box.)
Figure 5: The DatabaseName
property drop-down list includes
all aliases defined in IDAPI.CFG.

Figure 6: Live data is displayed in the DBGrid component once the
database connection is activated.
Using Aliases
Let’s now turn our attention to using a BDE alias to refer to
data on a form. To use an alias you must set the appropriate
property of a Data Access component. Examples used here
will include Table (TTable) and Database components
(TDatabase). Keep in mind, however, that you can use aliases
in other areas of Delphi, such as local SQL as well as other
descendants of TDataset objects, such as TQuery. (TTable is
itself a TDataset descendent.)

The following steps demonstrate the use of the alias DBDEMOS,
which is created automatically when you install Delphi. If this
alias is not available, you can use the BDE Configuration Utility
described earlier to create it. This alias should point to the data-
base demonstration files stored in a Delphi subdirectory named
\DEMOS\DATA (C:\DELPHI\DEMOS\DATA by default). If
both these files and alias are not available, then reinstall your
Database Desktop from your Delphi installation disks.

First, create a new project by selecting File | New Project from
the Delphi menu. Then add the following components from the
Component Palette: a DataSource and Table from the Data
Access page, and a DBGrid from the Data Controls page.

Select the TDataSource component (named DataSource1) and set
its DataSet property to Table1 (the TTable object’s name). Select
DBGrid1 (the TDBGrid component) and set its DataSource
property to DataSource1.

You are now prepared to use the alias. Select the TTable object
(named Table1) and click on its DatabaseName property in the
Object Inspector. The drop-down list displayed will contain all
aliases currently defined in IDAPI.CFG (as shown in Figure 5).
Select the BDE alias named DBDEMOS. Next, select the
TableName property of Table1. Click on the down arrow and
select the table named EMPLOYEE.DB.

Start the database connection by changing the Active property of
Table1 to True. The easiest way to do this is to double-click in
the Value column of the Active property. With the database con-
nection now active, the contents of the Employee table are dis-
played in the DBGrid component, as shown in Figure 6.

The important characteristic of this demonstration is that the
path to the EMPLOYEE.DB file is not stored in the project.
PREMIERE ISSUE
Only the alias is stored as a proper-
ty of the TTable component. The
path is stored in IDAPI.CFG. If
you later move a copy of
EMPLOYEE.DB to another direc-
tory, and modify the path of the
alias DBDEMOS using the BDE
Configuration Utility, this form
will automatically display the con-
tents of the table copy — not the
original.

Now is a good time to save this
project. Select File | Save Project
and save Unit1 as APAGE1.PAS,
and the project as ALIAS.DPR.

As mentioned earlier, you can also
create an alias that is local to an
application. This alias can be a com-
pletely new alias, or based on an
existing one, overriding one or more
of the existing alias parameters.
Creating Local Aliases
The following steps will demonstrate several interesting capabili-
ties. First, you’ll learn how to establish an alias local to an appli-
cation. Second, you’ll learn how to change the alias that a TTable
component points to during run-time.

Before continuing, you need to make a copy of the EMPLOY-
EE.DB table. Using the File Manager (or the DOS COPY com-
mand) copy EMPLOYEE.DB to another directory. Make sure to
remember which directory you are placing this copy in. In the
following demonstration, a copy of EMPLOYEE.DB is placed in
the subdirectory C:\TEMP.

We’ll continue to modify the example form. From the Data
Access page of the Component Palette, double-click on a
Database component to add it to the form. Next, double-click
on this component to display the Database dialog box (see
Figure 7). (Alternatively, you can right-click the Database
Delphi INFORMANT ▲ 41

DBNavigator

Figure 7: Use the Database dialog box to define a local alias.

Figure 8: Local aliases
appear with BDE aliases in
the DatabaseName property
drop-down list.
component and select Database editor from the SpeedMenu.)
You can use this dialog box to define either a new local alias,
or one that overrides the parameters of an existing alias.

Begin by entering a name in the Name text box. For this exam-
ple, type in the name TEMPORARY. If you want to base this new
alias on an existing one, you can use the Alias name drop-down
list to select the existing alias. However, when you are creating a
new alias, leave this drop-down list empty.

When you create a local alias based on an existing one, you do
not, and cannot, specify a driver name. The driver name will
automatically be based on the driver used by the existing alias.
When your local alias is not based on an existing one, you must
use the Driver name drop-down list to define the driver that the
alias will use. For this example, select the STANDARD driver.

The Parameter overrides box is used for specifying the parame-
ters of the local alias. If your alias is based on an existing one,
enter only those parameters you want to override. All other para-
meters will be based on those of the existing alias. You can click
the Defaults button to load all parameters of the existing alias in
the Parameters overrides box. Modify those you want to over-
ride and delete the remainder.

If your alias is new, you must supply all parameters required by
that alias driver. Click Defaults to easily prepare these parame-
ters. If your alias is not based on an existing one, the Defaults
button places blank parameters based on the selected driver
name in the Parameter overrides box. Click the Defaults but-
ton. Because the STANDARD driver is selected, the text
“PATH=” appears in the Parameter overrides box. Complete
this path by typing C:\TEMP, the subdirectory where you placed
the copy of EMPLOYEE.DB. The completed Database dialog
box appears in Figure 7.

The Database dialog box contains several check box options to
use when your local alias points to a remote database. Enable
the Login prompt when you want Delphi to display a dialog
box to the user when attempting to make a connection to the
PREMIERE ISSUE
database. If you do not enable the Login prompt, you must sup-
ply a user ID and password programmatically. You can also
enable the Keep inactive connection option to prevent Delphi
from dropping an inactive connection. Since the alias in this
example does not refer to a remote database, you can ignore
these check boxes.

Click the OK button to close the Database dialog box. When
you close the Database dialog box, its settings are used to modify
the properties of the Database component. Using the Object
Inspector, you’ll notice that the DatabaseName property is the
local alias name, DriverName is the name of the specified driver,
and the Params property is the parameter list. If your local alias
was based on an existing alias, the AliasName property would
contain the name of the existing alias, and Params would contain
the parameter overrides. (Note that instead of using the Database
dialog box, you could have also defined these properties directly
by using the Object Inspector.)

You can now select this local alias for use by the TTable compo-
nent, Table1. Select Table1 from the Object selector. Disconnect
from the current database by toggling the Active property from
True to False. Next, use the DatabaseName property drop-down
list to display the available aliases. As shown in Figure 8, this list

now contains both the BDE alias-
es defined in IDAPI.CFG, as well
as the local alias defined by the
TDatabase object. If your project
contained more than one
TDatabase object, more than one
local alias would be available.

Select the local alias, TEMPO-
RARY. Now make the connection
active again by toggling the Active
property from False to True.

Switching Aliases at Run-Time
Let’s now add a button to this
form. The button will toggle
between the aliases that the
TTable component points to
during run-time. From the
Standard page of the
Component Palette, double-

click the Button component to add it to the form and place it
beneath the DBGrid. Resize the button to about double its
length (we’re going to define a pretty long caption for it).
Now, double-click the button to display the Button1Click pro-
cedure. Enter the Object Pascal code shown in Figure 9.

Press 9 to compile and run the form. If you click the but-
ton, you will notice that the DBGrid is momentarily blank
while it’s inactive. When it becomes active again, the table
displayed is one from a directory pointed to by a different
alias. Because of the code added to the button’s OnClick
event, successive clicks toggle between the two tables, as well
Delphi INFORMANT ▲ 42

Figure 9: The OnClick event handler for Button1. This Object Pascal code
toggles between a BDE and local alias, and the Caption for Button1.

procedure TForm1.Button1Click(Sender: TObject);
begin
if Table1.DatabaseName = 'DBDEMOS' then

begin
Table1.Active := False;
Table1.DatabaseName := 'temporary';
Table1.Active := True;
Button1.Caption := 'Switch to Local Alias';

end
else

begin
Table1.Active := False;
Table1.DatabaseName := 'DBDEMOS';
Table1.Active := True;
Button1.Caption := 'Switch to DBDEMOS';

end;
end;

DBNavigator
as toggle the button’s captions. The form is shown in Figure
10 at run-time displaying data pointed to by the local alias,
TEMPORARY.
Figure 10: The demonstration form at run-time. The form displays
data stored in a table pointed to by a local alias. Clicking the button
will switch to a table pointed to by a BDE alias.
Conclusion
Aliases permit you to point to data without having to hard-
code directory paths in your applications. The aliases you use
can either be those stored in IDAPI.CFG, or private to a pro-
ject. When your applications use tables, aliases make your
applications more flexible. ∆

The demonstration project referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\APRIL\ CJ9504.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, and author of numerous books on
database software. You can reach Jensen Data Systems at (713) 359-3311, or
through CompuServe at 76307,1533.

PREMIERE ISSUE Delphi INFORMANT ▲ 43

PREMIERE ISSUE

Component Basics
An Introduction to Delphi Custom Components

From the Palette
Delphi / Object Pascal | Beginner / Intermediate

By Jim Allen & Steve Teixeira
I f you haven’t guessed it by now, Delphi is a component-based application
development environment. So what does that mean? It means with Delphi
you develop applications in part by dragging components off a palette and

dropping them onto a form. A component encapsulates data and functionality.
The component user doesn’t have to worry about its implementation — unless,
of course, you’re the one designing the component.

As a component designer, you must anticipate the needs of the component user in your design and
implementation. This is no easy task. You must not only anticipate their obvious needs such as
properties, events, and methods, but the not-so-obvious ones such as error checking (exception
handling), resource management, and implementation methods — the elements that make compo-
nents “dummy proof”.

A component that is simple to use and makes a difficult or complicated task (e.g. serial communi-
cations, bitmap manipulation, complex data calculations) easy to perform, should be the goal of
every component designer.
Before you begin to design custom components, you should have a thorough
understanding of the components in Delphi’s Visual Component Library
(VCL) and custom component design. In this article, we’ll present the basic
information you need to know to write custom Delphi components.
Although we won’t actually write a functional component, we’ll give you all
the background information you need before you get your hands dirty.
When Do I Create a Custom Component?
As the producer of components, it’s up to you to decide what types of com-
ponents to create. How do you know if you need a new component or if an
existing component will work? If all three of the statements below are true,
then you have a candidate for a Delphi custom component:
• You need to simplify a difficult or complicated task.
• You need something that is easy to re-use.
• There isn’t an existing component that can do the same task.

To reiterate, if the task is already simple, there’s no reason to make it a com-
ponent. Making a component for a simple job can just make it more diffi-
cult to implement and understand. If your task is something you are only
Delphi INFORMANT ▲ 44

TCustomCheckBox

TCustomComboBox

TCustomDBGrid

TCustomEdit

TCustomGrid

TCustomGroupbox

TCustomLabel

TCustomListbox

TCustomMaskEdit

TCustomMemo

TCustomOutline

From the Palette
going to do once or twice during development, then you’re better
off writing the code and saving it in a library of functions, proce-
dures, or class definitions. There is no need to clutter the
Component Palette with components you’ll never use again.

If a component that fits the bill already exists, then most of your
work may be done. Completing the job may be a simple matter
of attaching code to event handlers of a pre-existing component.

Any of the following reasons can be just as important:
• You want to add some custom functionality to your applica-

tion (e.g. a control to give it a unique look and feel).
• You want to encapsulate the functions of a DLL (which are

procedural by their very nature) to make them easier to use.
• You want to play (the most important reason of all!). Make a

few components so you understand them and the VCL better.
TCustomPanel

TCustomRadioGroup

Figure 1: The Visual
Component Library’s custom
classes.
The Family Tree
To create a custom component, you need to know which VCL com-
ponent to use as a basis for your new component. Most components
will be derived from a small group of ancestor class definitions:
• TComponent is as far down the VCL family tree as most com-

ponent designers will ever need to go. It’s the base class for
most non-visual components, and introduces the capability
of components to read and write themselves to streams. Also,
it can own other components. It’s used to create components
such as TTable, TDatabase, and TTimer.

• TWinControl is the base class for any component that
requires input focus from Windows. This can be used for
encapsulating existing Windows controls like TScrollBar.

• TCustomControl is a direct descendant from TWinControl and
can get input focus from Windows. It’s the first component to
have Canvas and Paint methods that allow you to customize its
appearance. This can be used for most components that require
input focus like TNoteBook, TMediaPlayer, or THintWindow.

• TGraphicControl does not have a Canvas or a Paint method,
and instead uses its parent’s canvas. It’s primarily used for cre-
ating “window dressing” like TLabel, TShape, or TBevel.

Components can also be derived from one of the top-most com-
ponents (such as TEdit, TLabel, TForm, etc.) if you are only
modifying or expanding existing functionality. For example, you
would modify TButton to create a specialized button.

When you need a custom component that behaves like one of the
VCL components, pay particular attention to the VCL’s custom
classes (shown in Figure 1). Custom classes contain all the proper-
ties and methods of their namesakes (TCheckBox, TComboBox,
TDBGrid, etc.), but the properties are not published. This is done
so you can surface only the behavior you want to make available to
the component user.
Component Guts
The skeleton of a Delphi custom component is simple, yet pow-
erful in its design. The basic structure of a component derived
from a TComponent is shown in Figure 2 (as generated by the
Component Expert).
PREMIERE ISSUE
It’s a standard class definition
with only a few exceptions:
• The private section is used

for the internal workings
(implementation details) of
the component. Anything
declared within this section
can only be seen from within
the class unit. For method
declarations, this is where
you would hide anything you
do not want the component
user to access.

• Anything declared within
the protected section can
be seen from within the
unit of the class and any
new class derived from it.
It’s common to place meth-
ods that you want to over-
ride in a descendant class in
this section.

• The public section is used

for the run-time interface. Anything declared within this sec-
tion can be seen by anything else in the application. This is
where you would place properties or methods that you want
component users to access only at run-time.

• The published section is similar to the public declaration.
However, properties declared here will be visible in the
Object Inspector in design mode.

It’s important that you fully understand the differences between
the declaration sections because they will have a direct impact on
how your component works and how the developer works with
the component. For instance, if you declare a method in the pri-
vate section of your component and at some point someone
wants to override that method — it just won’t happen. By
declaring the method as private you have locked all users out of
that method.

On the other hand, if you declared a potentially sensitive variable
or method in the public section, component users can misuse it
and render the component useless. Therefore, be very careful
when planning the interface of your components. They can
come back to haunt you.

Something else to notice about the component skeleton is its
Register procedure.

procedure Register;
begin

RegisterComponents('Test',[MyComponent]);
end;

This procedure registers the component with the Delphi compo-
nent library and places it on the Component Palette. Notice the
'Test' part of the call. This tells Delphi which page of the
Component Palette to place your component on. If the name
Delphi INFORMANT ▲ 45

Figure 2: A component created by the Delphi Component Expert.

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs;

type
MyComponent = class(TComponent)
private

{ Private declarations }
protected

{ Protected declarations }
public

{ Public declarations }
published

{ Published declarations }
end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Test', [MyComponent]);
end;

end.

From the Palette
you provide is not already on the Palette, Delphi will create a
new page with that name.
Variables, Methods, and Properties
The variables, methods, and properties added to your compo-
nent skeleton give it behavior. Instance variables, sometimes
called fields, are variable instances that belong to the class. These
variables can be of any valid type (e.g. integer, double, record).
Even another class is a valid instance variable type.

Let’s add some instance variables to our MyComponent class:

type
MyComponent = class(TComponent)
private

Int: integer;
D: double;

protected
{ Protected declarations }

public
C: SomeOtherClass;

published
{ Published declarations }

end;

Remember, since we made the Int and D instance variables pri-
vate, they won’t be visible to classes declared outside this unit.

Methods are simply procedures or functions that work as mem-
bers of a class. You declare them as you would any other proce-
dure or function inside the declaration for MyComponent:

type
MyComponent = class(TComponent)
private

Int: integer;
D: double;
PREMIERE ISSUE
protected
procedure SomethinCool; virtual;

public
C: SomeOtherClass;
function HowBigIsD: Double;

published
{ Published declarations }

end;

Notice we use the virtual directive as part of the SomethinCool
procedure declaration. This allows us to override SomethinCool
in descendant classes. There are four such directives that you
would primarily use with methods:
• The virtual directive is used to create virtual methods.

Virtual methods are methods that can be overridden in
descendant classes to modify a class’ behavior. The result of
this is a small performance penalty in calling virtual methods
as opposed to normal (static) methods such as HowBigIsD.
Having virtual methods in a class also occupies more memo-
ry because each class instance keeps all its virtual methods in
a table named the Virtual Method Table (or VMT).

• The dynamic directive is used to create dynamic methods.
Dynamic methods function almost identically to virtual meth-
ods, but are implemented slightly differently resulting in a
larger performance penalty. However, the Dynamic Method
Table (DMT) requires less space than the VMT, so they are
more memory efficient.

• Use the override directive whenever you override a method in
a descendant class. Never re-use the virtual or dynamic direc-
tives when overriding a method.

• The abstract directive must always be paired with virtual or
dynamic. Using this directive creates a procedure without func-
tionality and is designed to be overridden by descendant classes.
In other words, abstract helps you define an interface to a class,
but the implementation is up to the descendants of the class.

Methods are defined in the implementation part of your unit.
You must use the class name and the dot scoping operator when
defining methods. For example:

implementation

procedure MyComponent.SomethinCool;
begin

{ Call the Windows API function to beep }
MessageBeep(0);

end;

function MyComponent.HowBigIsD: Double;
begin

Result := D;
end;

Properties allow you to publish a safe and intuitive interface for
your custom components — exposing enough functionality for
users get a lot out of your component, but not so much that
they shoot themselves in the foot.

Defining a property is easy, just use the property keyword fol-
lowed by the property name, type, and some directives telling the
property how to read or write itself. As an illustration, we’ll add a
property IProp to the MyComponent to access instance variable Int:
Delphi INFORMANT ▲ 46

From the Palette
type
MyComponent = class(TComponent)
private

Int: integer;
D: double;

protected
procedure SomethinCool; virtual;

public
function HowBigIsD: Double;

published
property IProp: integer read Int write Int;

end;

The read and write directives mean that whenever the user reads
IProp, its value is taken from Int. Whenever a user writes to
IProp, the value is written to Int.

You can also read from and write to methods of MyComponent.
For example, you can make the IProp property change the value
of Int by writing to a method. Just add a SetInt procedure to the
MyComponent function and change the write directive for the
IProp property as shown below:

type
MyComponent = class(TComponent)
private

Int: integer;
D: double;
procedure SetInt(Value: integer);

protected
procedure SomethinCool; virtual;

public
function HowBigIsD: Double;

published
property IProp: integer read Int write SetInt;

end;

The SetInt method is defined as:

procedure MyComponent.SetInt(Value: integer);
begin

if Int <> Value then
Int := Value;

end;

In effect, this says “change the value of Int to match Value only if
they are not already equal”. This little check for equality may
seem extraneous, but it actually helps avoid adding overhead to
our program’s execution as we’ll show in a moment.

In addition to read and write, you can also use the default directive
to assign a default property value. When doing so, you must also
assign that value in your component’s constructor, or Delphi will
have problems loading your component from a .DFM file. You can
make a property read-only by omitting the write directive.
Jim Allen is an engineer in Borland’s Technical Support Department. Jim
supports Delphi, object-oriented programming, and applications develop-
ment in various languages. He is also responsible for internal training for
database development and related subjects.

Steve Teixeira is a Senior Engineer at Borland International Technical
Support. He writes for several industry periodicals, and is the co-author
of Delphi Developer's Guide from Sam’s Publishing. You can reach him
on CompuServe at 74431,263 or via the Internet at
steixeira@wpo.borland.com.
Events
An event is a mechanism for linking an occurrence (a mouse-click,
for example) to specific Object Pascal code. Properly, an event is a
pointer to a specific method in a specific object instance.

Creating a published event is a three-step process:
• Create the event instance variable. The variable should be of

TxxxEvent type. You can use one of the pre-defined types,
PREMIERE ISSUE
such as TNotifyEvent, or create one.
• Create the event property. The property will allow users to

assign code to the event in the Object Inspector.
• Call the event somewhere in your component’s code.

The first two steps are straightforward based on earlier examples of
instance variables and properties. Let’s add them to MyComponent:

type
MyComponent = class(TComponent)
private

Int: integer;
D: double;
procedure SetInt(Value: integer);
FOnIntChanged: TNotifyEvent;

protected
procedure SomethinCool; virtual;

public
function HowBigIsD: Double;

published
property IProp: integer read Int write SetInt;
property OnIntChanged: TNotifyEvent

read FOnIntChanged write FOnIntChanged;
end;

Now you have to simply call the event at some point in your
code. As its name implies, we’ll call the event when the value of
IProp is changed. To do this requires a couple of modifications to
the SetInt method:

procedure MyComponent.SetInt(Value: integer);
begin

if Int <> Value then
begin

Int := Value;
if assigned(FOnIntChanged) then

FOnIntChanged(Self);
end;

end;

The new line of code checks to see if the user has assigned a value to
the OnIntChanged event, and, if so, calls that method — passing the
class instance (Self) as a parameter. Notice our check to make sure
Int is not equal to Value now pays off. The OnIntChanged event will
now only fire when the value is actually changed (as opposed to
being assigned the same value).
Conclusion
By now you know most of the basics for creating custom compo-
nents in Delphi. The most important advice we’ve given is to put
some thought into the design of your custom component before
you begin. Next month, we’ll get our hands dirty and create
some functional components. Until then, happy hacking! ∆
Delphi INFORMANT ▲ 47

At Your Fingertips
b y d a v i d r i p p y

Delphi / Object Pascal | All Levels

Caution has its place, no doubt, but we cannot refuse our support to a serious venture which
challenges the whole of the personality. If we oppose it, we are trying to suppress what is best
in man — his daring and his aspirations.

— Carl Jung, Swiss psychiatrist
Welcome to “At Your Fingertips”, the bi-monthly tips column that
will help guide you through the vast Delphi universe. It will be a
challenging journey, no doubt, as all great adventures are, but there
will be great rewards for the persistent, the patient, and the creative.
So let’s throw caution to the wind, dig in, and learn something!
What’s the easiest way to add a status bar to my form?
Creating a status bar for a form — like the one shown in Figure
1 — is a great way to keep the user informed while your applica-
tion is running. For example, you might want to display a mes-
sage in the status bar indicating the completion status of a
lengthy process.

Delphi makes this easy by providing us with the standard
Panel component. First, place a Panel component (from the
Component Palette’s Standard page) on the form. Don’t worry
about its size or alignment — setting the Align property to
alBottom will handle this for us. Use the Object Inspector to
Figure 1: Delphi makes it easy to
add a status bar to a form.

Figure 3 (Top): The Locate Example form
in design mode. Figure 4 (Bottom): At
runtime, the record marker advances to
IBM after a successful locate.
set the following properties
for Panel1: set Align to
alBottom, Alignment to
taLeftJustify, and BevelInner
to bvLowered. Leave the
Caption property alone for
now.

Your completed status bar
should now look similar to
the one shown in Figure 1.
Note that by setting the Align
PREMIERE ISSUE

Figure 2: This OnClick event handler updates the status bar.
property to alBottom
rather than sizing the
Panel manually, the
user can resize the
form, and the Panel
will automatically
adjust itself to fit the
width of the form.
This is a convenient
and elegant feature.

Using the Object
Inspector, simply set
the Panel’s Caption
property to the mes-
sage you want to
appear in the status
bar. The Object
Pascal code shown in
Figure 2 demon-
strates how this is
accomplished. —
D.R.

How can I allow a
user to search for a
value in a table?
A common feature in
a database applica-
tion is the ability to
search a column for

a particular value. Figure 3 shows a form containing a DBGrid
component with two columns: Manufacturer and Title. In this
example, the user enters the name of a manufacturer to search
for in the Edit1 field and presses the Locate button.

If the value is found in the Manufacturer column, the DBGrid’s
record marker moves to the record containing the value. If the
Delphi INFORMANT ▲ 48

At Your Fingertips
value in the Edit1 field is not found, a message box is displayed
to notify the user. Figure 4 shows the form at runtime with
“IBM” entered into the Edit1 field. As you can see, the locate
was successful because the record marker moved to the row con-
taining “IBM” in its Manufacturer column.

Searching for a value on an indexed field requires very little coding
in Delphi. All the necessary logic is found in the OnClick event
handler of Button1 (the Locate button), as shown in Figure 5. This
code uses the SetKey and GoToKey methods to search the
Manufacturer column for the value entered in the Edit1 field.
Figure 5: The OnClick event handler of Button1 performs the locate.
Note that in this example, the locate operation is case-sensitive.
Therefore, entering “ibm” would not have located the value
“IBM” in the Manufacturer column. — D.R.
Figure 7 (Top): Only the records within the range are displayed.
Figure 8 (Bottom): Sample Object Pascal code for applying and
canceling a range.
How can I allow a user to filter records in a DBGrid?
Like the locate example above, the ability to filter the data pre-
sented to a user is a fundamental element of any data-intensive
application. Fortunately, Delphi makes filtering on indexed fields
a painless process. The example form in Figure 6 shows a
DBGrid (named DBGrid1) containing two fields — ID and
Name. Also shown are two edit fields — Edit1 and Edit2 —
and buttons for setting and canceling a range.

To set a filter, the user enters a starting value in the field labeled
Start and an ending value in the field labeled End. When the Set
Range button is pressed, DBGrid1 will only display records that
fall within the given ID range. Pressing the Cancel Range but-
ton will cause all the data to be displayed again.
PREMIERE ISSUE

Figure 6: The Filter Example form in design mode.
In Figure 7, a range has been set to display only the records with
ID numbers falling between 200 and 299. When the Set Range
button is pressed, only “Yogurt” entries will be shown in the
DBGrid. To display every record, the user can simply press the
Cancel Range button.

The Object Pascal code for applying a filter is located in the
OnClick event handler of Button1, as shown in Figure 8. The pri-
mary methods for filtering data are SetRangeStart, SetRangeEnd,
and SetRange. Together, these methods allow you to set the start-
ing and ending values of the range of data you want to view.

To cancel a range programatically, simply call the CancelRange
method as shown in the OnClick event handler of Button2 (see
Figure 8). — D.R. ∆

All files referenced in this article (projects, forms, tables, etc.) are avail-
able on the 1995 Delphi Informant Works CD located in
INFORM\95\APRIL\DR9504.
Delphi INFORMANT ▲ 49

David Rippy is a Senior Consultant with Ensemble Corporation, special-
izing in the design and deployment of client/server database applica-
tions. He has contributed to several books published by Que, and is a
contributing writer to Paradox Informant. David can be reached on
CompuServe at 74444,415.

PREMIERE ISSUE

Calling DLLs Dynamically
Developing Modular Applications Using the Windows API

API Calls
Delphi / Object Pascal / Windows API | Advanced

By Alistair Ramsey

Figure 1: The demonstration program
When developing modular applications, module names can be stored
in a file or database table. If any of these modules are dynamic link
libraries (DLLs) however, what do you do when you can’t hard-code

the library’s name?

This article discusses a technique to call procedures from DLLs using the Windows API within
Delphi when the name of the DLL and procedure are not known at compile-time.
Why Use this Technique?
In Delphi, it’s possible to compile a program as a DLL by specifying externally available procedures
or functions using an Object Pascal exports clause. To use one of these procedures in an applica-
tion, the calling program must make a forward declaration of the procedure’s name with an export
and far directive along with the name of the DLL.

This method is fine when the DLL and procedure names are known before compiling. However, the
application may have a list of sub-module names that are compiled as DLLs, but are read into a menu
when Delphi begins. The names of these DLLs may be stored in an .INI file or a database table along
with the name of a procedure. Their names may change over time, and therefore aren’t known before
compile-time. In this example, we need a technique that reads DLL names into a string and calls the
unnamed DLLs using the Windows API.

Some DLL Basics
A DLL is essentially a module of executable code. However, a DLL cannot be run in the sense that

an .EXE file can. A DLL contains code that can be called by an .EXE at run-time.
 at run-time.
Before Windows and DLLs became common tools for programmers, any code that
was going to be re-used would typically be pre-compiled and stored in some sort of
library. In Turbo Pascal these common pieces of code would be compiled into unit
files (a .TPU or .TPW file). In a C environment these would be compiled as object
code (.OBJ) files and stored in a library (.LIB) file. Whichever language was used,
these could then be compiled into many different application (.EXE) files, and
would only require recompiling if the unit or object file source code was changed.

The fact that the unit or object file must exist and be accessible to the compiler
at compile-time is important. With a DLL, the code in the library is not linked
into the .EXE at compile-time (as with the static linking described earlier), but is
dynamically linked at run-time.
Delphi INFORMANT ▲ 50

API Calls
DLLs have several advantages. They allow you to update applica-
tions by updating the individual DLLs rather than recompiling
the executable (.EXE) file. Since the executable doesn’t have the
code linked into it, it’s smaller. Also, multiple executables can use
the same DLL, which increases the reusability of the code.

In Delphi it’s possible to define procedures in a DLL and then call
those procedures at run-time. When the main program (the exe-
cutable) is compiled, the DLL doesn’t even need to exist. When a
DLL is registered by an application, an internal user count is incre-
mented by one. When the DLL is unloaded this count is decreased.
The Building Blocks
The code in this article uses the following Object Pascal language
elements: the TFarProc type, the GetMem procedure, the StrPCopy
function, the FileExists function, and the MessageDlg function.

It also uses the Windows API functions LoadLibrary,
GetProcAddress, and FreeLibrary. With the exception of
TFarProc — which is a pointer to a procedure — the language
elements should be fairly familiar.

Here’s a brief description of each Windows API function:
The LoadLibrary function takes a single argument, the name of
the DLL, as a PChar. If the DLL loads correctly, it returns a han-
dle to the DLL. (In Delphi this is defined as a THandle and is
just a two-byte word type.) Otherwise an error code is returned.
If the returned value is less than 32, an error has occurred. Some
error codes correspond to DOS file errors (e.g. 2 indicates that
the DLL file was not found, 3 indicates an invalid path, etc.).
Other return codes are specific to the Windows environment (e.g.
10 indicates that the Windows version was incorrect).

The GetProcAddress function returns a run-time address for the
required procedure from the specified DLL. It takes two argu-
ments, a DLL handle and procedure name, as a PChar.

The FreeLibrary function takes a valid THandle and unloads the
library from Windows. This function decreases the user count of the
DLL. When the count reaches zero, the DLL is finally unloaded.
Alistair Ramsey is a programmer/analyst at Dunstan Thomas Ltd. in the UK. He has
been programming in Pascal for 10 years and is now a senior member of the Dunstan
Thomas Delphi Team. Alistair will be representing Borland UK at the upcoming
International Developer's Challenge in the US. You can contact him at aramsey@-
dtport-.mhs.compuserve.com, or call 44 (1) 705-822254.
The Technique
First you need a handle to the DLL. Delphi defines a type,
THandle, that you can use for this purpose. Make a call to the
Windows API LoadLibrary function which returns a THandle. You
should check the value of the returned THandle — a value less
than 32 indicates failure.

As with all Windows API functions, the name of the DLL must be
passed as a null-terminated string (PChar) type — not the Pascal
pre-defined string type. This Object Pascal statement shows the call:

DLL_Handle := LoadLibrary(DLLPchar);

Next, you need to get the address of the procedure to call by
using the GetProcAddress function. This takes the THandle
returned from LoadLibrary and a procedure name — again, a
null-terminated string (PChar) — as arguments. If it fails, it
PREMIERE ISSUE
returns Nil. Otherwise, an address is returned.

Assign the returned address to a variable of procedural type (Proc
in this example) and call the procedure:

TFarProc(@Proc) := GetProcAddress(DLL_Handle,Proc_Name);
{ The next line calls the procedure }
Proc;

The type casting using TFarProc sets the procedural type variable
to the specified address. After the call has completed, the DLL
should be unloaded using a call to FreeLibrary:

FreeLibrary(DLL_Handle);

This method is used by our company in an application that is
implemented as an .EXE “shell”. The main functionality of the
system is implemented as a series of DLL modules that can be
supplemented over time. The names of available modules are
held in a table. At run-time this table is read and a drop-down
menu containing the module names is constructed.

A generic procedure is assigned to the OnClick event handler for
each menu option. The event handler then calls a generic proce-
dure, GenericModuleCaller, to call the required procedure.
A Working Example
In the demonstration program accompanying this article, the form
has a button and two radio button groups. Selecting a module and
procedure and then clicking the button will call the DLL using the
method described above. The valid combinations are
Project1/Open1 and Project2/Open2. Other combinations will fail.

When clicking the button with a valid combination, the DLL
module 1 is loaded (as shown in Figure 1) and displays a form.
Note that the DLL procedure doesn’t need to have a visible
form, it could be a portion of code that executes a process.

The project’s source code follows this article. Listings Five and
Six contain the project and unit files (respectively) for the main
application. (Note that the code expects the Project1.DLL and
Project2.DLL files to be in the \Windows directory on drive C:.)
Listings Seven and Eight contain the project and unit files
(respectively) for the first DLL form. The source and unit files
for the second DLL form are identical, except that all references
to “1” instead refer to “2”.
Conclusion
So there you have it. As we’ve seen, Delphi provides the flexibili-
ty to enable us to call DLLs dynamically at run-time. ∆

The project referenced in this article is available on the 1995 Delphi
Informant Works CD located in INFORM\95\APRIL\AR9504.
Delphi INFORMANT ▲ 51

API Calls
Begin Listing Five: DLLDEMO.DPR
program Dlldemo;

uses
Forms,
Dyn_dll in 'DYN_DLL.PAS' {Form1};

{$R *.RES}

begin
Application.CreateForm(TForm1, Form1);
Application.Run;

end.

End Listing Five
Begin Listing Six: DYN_DLL.PAS
unit Dyn_dll;

interface
uses

SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
GroupBox1: TGroupBox;
RadioButton1: TRadioButton;
RadioButton2: TRadioButton;
GroupBox2: TGroupBox;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
Image1: TImage;
procedure Button1Click(Sender: TObject);

private
{ Private declarations }
procedure GenericModuleCaller(ModuleName,

ProcName : string);
public

{ Public declarations }
end;

var
Form1: TForm1;

implementation

{$R *.DFM}

var
ModuleName,
ProcName : string;

procedure TForm1.GenericModuleCaller(
ModuleName,ProcName : string);
PREMIERE ISSUE
var
{ Library and procedure names as

null-terminated strings }
DLLPchar, Proc_Name : PChar;
{ Procedural type declaration }
Proc : procedure;
{ DLL handle }
DLL_Handle : THandle;

begin
DLL_Handle := 0;
GetMem(DLLPchar, Length(ModuleName) + 1);
StrPCopy(DLLPchar, ModuleName);
if not FileExists(ModuleName) then

MessageDlg(‘Fatal Error: No DLL’,mtWarning,[mbOk],0)
else

begin
GetMem(Proc_Name,Length(ProcName)+1);
StrPCopy(Proc_Name, ProcName);
if DLL_Handle = 0 then

DLL_Handle := LoadLibrary(DLLPchar);
if DLL_Handle >= 32 then

begin
TFarProc(@Proc) :=

GetProcAddress(DLL_Handle, Proc_Name);
if TFarProc(@Proc) = Nil then

MessageDlg('Fatal Error'+#13+
'in GetProcAddress()',
mtWarning, [mbOk], 0)

else
Proc;

end
else

MessageDlg(‘Fatal Error with DLL’,
mtWarning, [mbOk], 0);

end;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

if RadioButton1.Checked then
ModuleName :=

'C:\WINDOWS\'+RadioButton1.Caption+'.DLL'
else

ModuleName :=
'C:\WINDOWS\'+RadioButton2.Caption+'.DLL';

if RadioButton3.Checked then
ProcName := RadioButton3.Caption

else
ProcName := RadioButton4.Caption;

GenericModuleCaller(ModuleName, ProcName);

end;
end.

End Listing Six
Delphi INFORMANT ▲ 52

API Calls
Begin Listing Seven: DLL1.DPR
Library Dll1;

uses
Forms,
Dllform1 in 'DLLFORM1.PAS' {Form1};

{$R *.RES}

exports
Open1;

begin
end.

End Listing Seven
Begin Listing Eight: DLLFORM1.PAS
unit Dllform1;

interface
uses

SysUtils, WinTypes, WinProcs, Messages,
Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Buttons, ExtCtrls;

type
TForm1 = class(TForm)

Panel1: TPanel;
BitBtn1: TBitBtn;

private
{ Private declarations }

public
{ Public declarations }

end;
var

Form1: TForm1;
procedure Open1; export;
implementation

{$R *.DFM}

procedure Open1;
begin

try
Application.CreateForm(TForm1, Form1);
Form1.ShowModal;

finally
Form1.Free;

end;
end;

end.

End Listing Eight
PREMIERE ISSUE Delphi INFORMANT ▲ 53

	Table of Contents
	Delphi Tools
	Conversion Assistant Moves VB Applications to Delphi
	New Windows Data Transfer Tool Available
	VisualPros: Developer and Video Tools for Delphi
	MicroHelp Ships Communications Library 3

	Newsline
	Delphi Unveiled, Main Attraction at Software Development 95
	Borland Wins Lotus Case
	InstallSHIELD Now Supports Delphi
	Mortice Kern Systems Announces Alliance with Borland
	LBMS Announces Alliance with Borland
	Novell’s Tuxedo Products Support Delphi
	Borland Launches World Wide Web Site
	TurboPower Acquired by Casino Data Systems, Plans Delphi Tools
	Borland Sells Sidekick, Dashboard to Starfish
	Kahn Announces Starfish Software

	Delphi: A Visual Tour
	Essential Delphi Elements
	The SpeedBar
	The Component Palette
	Forms
	Form Templates
	The Object Inspector: Properties
	The Object Inspector: Events
	The Code Editor
	The Project Manager
	Conclusion

	Approaching Components
	Creating Components
	The TComponent Class
	The Simplest Component
	Adding a Component to the Palette
	Creating a Property
	Access Methods
	Invoking Component Methods
	Conclusion

	Data-Aware Delphi
	Placing the Database Components
	Components on the Top Panel
	The Tab Component
	Adding Event-Handling Code
	Reviewing the Source Code
	Compiling and Running the Form
	Listing One: Viewcust.PAS

	Conclusion

	A PC Sound Garden
	The TMediaPlayer Component
	The Minimal CD Player Project
	Tracking the CD
	Happy Listening
	Listing Two — CD.PAS
	Listing Three — CDPLAYER.DPR
	Listing Four — ABOUT.PAS

	From ODBC to the BDE
	Client/Server Architecture
	The Progression to the Client/Server Model
	Downsizing: Advantages of Client/Server Architecture
	Why Upsize to Client/Server from File Servers?
	Borland’s Upsizing Strategy and BDE
	Loading the ODBC Driver
	Creating a BDE Alias
	Creating a Delphi Client/Server Application
	Delphi’s Unique Features
	Client/Server Tips
	Conclusion

	A Programmer’s Compass
	The Types
	Creating BDE Aliases
	Using Aliases
	Creating Local Aliases
	Conclusion

	Component Basics
	When Do I Create a Custom Component?
	The Family Tree
	Component Guts
	Variables, Methods, and Properties
	Events
	Conclusion

	At Your Fingertips
	What’s the easiest way to add a status bar to my form?
	How can I allow a user to search for a value in a table?
	How can I allow a user to filter records in a DBGrid?

	Calling DLLs Dynamically
	Why Use this Technique?
	Some DLL Basics
	The Building Blocks
	The Technique
	A Working Example
	Conclusion
	Listing Five: DLLDEMO.DPR
	Listing Six: DYN_DLL.PAS
	Listing Seven: DLL1.DPR
	Listing Eight: DLLFORM1.PAS

